def multiquery(corpus, query, sort_by = 'total', quicksave = False): import corpkit """Creates a named tuple for a list of named queries to count. Pass in something like: [[u'NPs in corpus', r'NP'], [u'VPs in corpus', r'VP']]""" import collections import os import pandas import pandas as pd from time import strftime, localtime from interrogator import interrogator from editor import editor if quicksave: savedir = 'saved_interrogations' if not quicksave.endswith('.p'): quicksave = quicksave + '.p' fullpath = os.path.join(savedir, quicksave) while os.path.isfile(fullpath): selection = raw_input("\nSave error: %s already exists in %s.\n\nPick a new name: " % (savename, savedir)) if not selection.endswith('.p'): selection = selection + '.p' fullpath = os.path.join(savedir, selection) results = [] for name, pattern in query: result = interrogator(corpus, 'count', pattern) result.totals.name = name # rename count results.append(result.totals) results = pd.concat(results, axis = 1) results = editor(results, sort_by = sort_by, print_info = False, keep_stats = False) time = strftime("%H:%M:%S", localtime()) print '%s: Finished! %d unique results, %d total.' % (time, len(results.results.columns), results.totals.sum()) if quicksave: from other import save_result save_result(results, quicksave) return results
def pmultiquery( path, option="c", query="any", sort_by="total", quicksave=False, num_proc="default", function_filter=False, just_speakers=False, root=False, note=False, print_info=True, **kwargs ): """Parallel process multiple queries or corpora. This function is used by interrogator if: a) path is a list of paths b) query is a dict of named queries c) function_filter is iterable d) just speakers == 'each' This function needs joblib 0.8.4 or above in order to run properly.""" import collections import os import pandas import pandas as pd import collections from collections import namedtuple from time import strftime, localtime from interrogator import interrogator from editor import editor from other import save_result try: from joblib import Parallel, delayed except: pass # raise ValueError('joblib, the module used for multiprocessing, cannot be found. ' \ # 'Install with:\n\n pip install joblib') import multiprocessing def best_num_parallel(num_cores, num_queries): import corpkit """decide how many parallel processes to run the idea, more or less, is to balance the load when possible""" if num_queries <= num_cores: return num_queries if num_queries > num_cores: if (num_queries / num_cores) == num_cores: return int(num_cores) if num_queries % num_cores == 0: return max([int(num_queries / n) for n in range(2, num_cores) if int(num_queries / n) <= num_cores]) else: import math if (float(math.sqrt(num_queries))).is_integer(): square_root = math.sqrt(num_queries) if square_root <= num_queries / num_cores: return int(square_root) return num_cores num_cores = multiprocessing.cpu_count() # are we processing multiple queries or corpora? # find out optimal number of cores to use. multiple_option = False multiple_queries = False multiple_speakers = False multiple_corpora = False denom = 1 if hasattr(path, "__iter__"): multiple_corpora = True num_cores = best_num_parallel(num_cores, len(path)) denom = len(path) elif hasattr(query, "__iter__"): multiple_queries = True num_cores = best_num_parallel(num_cores, len(query)) denom = len(query) elif hasattr(function_filter, "__iter__"): multiple_option = True num_cores = best_num_parallel(num_cores, len(function_filter.keys())) denom = len(function_filter.keys()) elif just_speakers: from corpkit.build import get_speaker_names_from_xml_corpus multiple_speakers = True if just_speakers == "each": just_speakers = get_speaker_names_from_xml_corpus(path) if len(just_speakers) == 0: print "No speaker name data found." return num_cores = best_num_parallel(num_cores, len(just_speakers)) denom = len(just_speakers) if num_proc != "default": num_cores = num_proc # make sure quicksaves are right type if quicksave is True: raise ValueError("quicksave must be string when using pmultiquery.") # the options that don't change d = { "option": option, #'paralleling': True, "function": "interrogator", "root": root, "note": note, "denominator": denom, } # add kwargs to query for k, v in kwargs.items(): d[k] = v # make a list of dicts to pass to interrogator, # with the iterable unique in every one ds = [] if multiple_corpora: path = sorted(path) for index, p in enumerate(path): name = os.path.basename(p) a_dict = dict(d) a_dict["path"] = p a_dict["query"] = query a_dict["outname"] = name a_dict["just_speakers"] = just_speakers a_dict["paralleling"] = index a_dict["printstatus"] = False ds.append(a_dict) elif multiple_queries: for index, (name, q) in enumerate(query.items()): a_dict = dict(d) a_dict["path"] = path a_dict["query"] = q a_dict["outname"] = name a_dict["just_speakers"] = just_speakers a_dict["paralleling"] = index a_dict["printstatus"] = False ds.append(a_dict) elif multiple_option: for index, (name, q) in enumerate(function_filter.items()): a_dict = dict(d) a_dict["path"] = path a_dict["query"] = query a_dict["outname"] = name a_dict["just_speakers"] = just_speakers a_dict["paralleling"] = index a_dict["function_filter"] = q a_dict["printstatus"] = False ds.append(a_dict) elif multiple_speakers: for index, name in enumerate(just_speakers): a_dict = dict(d) a_dict["path"] = path a_dict["query"] = query a_dict["outname"] = name a_dict["just_speakers"] = [name] a_dict["function_filter"] = function_filter a_dict["paralleling"] = index a_dict["printstatus"] = False ds.append(a_dict) time = strftime("%H:%M:%S", localtime()) if multiple_corpora and not multiple_option: print ( "\n%s: Beginning %d parallel corpus interrogations:\n %s" "\n\n Query: '%s'" "\n Interrogating corpus ... \n" % (time, num_cores, "\n ".join(path), query) ) elif multiple_queries: print ( "\n%s: Beginning %d parallel corpus interrogations: %s" "\n Queries: '%s'" "\n Interrogating corpus ... \n" % (time, num_cores, os.path.basename(path), "', '".join(query.values())) ) elif multiple_option: print ( "\n%s: Beginning %d parallel corpus interrogations (multiple options): %s" "\n\n Query: '%s'" "\n Interrogating corpus ... \n" % (time, num_cores, os.path.basename(path), query) ) elif multiple_speakers: print ( "\n%s: Beginning %d parallel corpus interrogations: %s" "\n\n Query: '%s'" "\n Interrogating corpus ... \n" % (time, num_cores, os.path.basename(path), query) ) # run in parallel, get either a list of tuples (non-c option) # or a dataframe (c option) # import sys # reload(sys) # stdout=sys.stdout failed = False # ds = ds[::-1] if not root: from blessings import Terminal terminal = Terminal() print "\n" * (len(ds) - 2) for dobj in ds: linenum = dobj["paralleling"] with terminal.location(0, terminal.height - (linenum + 1)): # this is a really bad idea. thetime = strftime("%H:%M:%S", localtime()) print "%s: [ 0%% (%s) ]" % (thetime, dobj["outname"]) # res = Parallel(n_jobs=num_cores)(delayed(interrogator)(**x) for x in ds) try: # ds = sorted(ds, key=lambda k: k['paralleling'], reverse = True) res = Parallel(n_jobs=num_cores)(delayed(interrogator)(**x) for x in ds) print "\n\n\n" except: failed = True print "Multiprocessing failed." raise try: res = sorted(res) except: failed = True pass elif root or failed: res = [] for index, d in enumerate(ds): d["startnum"] = (100 / denom) * index res.append(interrogator(**d)) try: res = sorted(res) except: pass # multiprocessing way # from multiprocessing import Process # from corpkit.interrogator import interrogator # jobs = [] ##for d in ds: ## p = multiprocessing.Process(target=interrogator, kwargs=(**d,)) ## jobs.append(p) ## p.start() ## while p.is_alive(): ## import time ## time.sleep(2) ## if root: ## root.update() # result_queue = multiprocessing.Queue() # # for d in ds: # funs = [interrogator(result_queue, **kwargs) for kwargs in ds] # jobs = [multiprocessing.Process(mc) for mc in funs] # for job in jobs: job.start() # for job in jobs: job.join() # results = [result_queue.get() for mc in funs] # turn list into dict of results, make query and total branches, # save and return if not option.startswith("c"): out = {} # print '' for (name, data), d in zip(res, ds): for unpicklable in ["note", "root"]: try: del d[unpicklable] except KeyError: pass if not option.startswith("k"): outputnames = collections.namedtuple("interrogation", ["query", "results", "totals"]) try: stotal = data.sum(axis=1) stotal.name = u"Total" except ValueError: stotal = data.sum() output = outputnames(d, data, stotal) else: outputnames = collections.namedtuple("interrogation", ["query", "results"]) output = outputnames(d, data) out[name] = output # could be wrong for unstructured corpora? if quicksave: fullpath = os.path.join("saved_interrogations", quicksave) while os.path.isdir(fullpath): selection = raw_input( "\nSave error: %s already exists in %s.\n\nType 'o' to overwrite, or enter a new name: " % (quicksave, "saved_interrogations") ) if selection == "o" or selection == "O": import shutil shutil.rmtree(fullpath) else: import os fullpath = os.path.join("saved_interrogations", selection) for k, v in out.items(): save_result(v, k, savedir=fullpath, print_info=False) time = strftime("%H:%M:%S", localtime()) print "\n%s: %d files saved to %s" % (time, len(out.keys()), fullpath) time = strftime("%H:%M:%S", localtime()) print "\n\n%s: Finished! Output is a dictionary with keys:\n\n '%s'\n" % ( time, "'\n '".join(sorted(out.keys())), ) return out # make query and total branch, save, return else: out = pd.concat(res, axis=1) out = editor(out, sort_by=sort_by, print_info=False, keep_stats=False) time = strftime("%H:%M:%S", localtime()) print "\n\n%s: Finished! %d unique results, %d total." % (time, len(out.results.columns), out.totals.sum()) if quicksave: from other import save_result save_result(out, quicksave) return out