Ejemplo n.º 1
0
    def do_v_no_constraint(self):
        synfire_run = SynfireRunner()
        synfire_run.do_run(n_neurons, neurons_per_core=neurons_per_core,
                           delay=delay, run_times=[runtime], record=False,
                           record_v=True, record_gsyn_exc_7=False,
                           record_gsyn_inh=False)
        v = synfire_run.get_output_pop_voltage_numpy()

        self.assertEqual(n_neurons * runtime, len(v))
        read_v = numpy.loadtxt(v_file, delimiter=',')
        self.assertTrue(numpy.allclose(read_v, v, rtol=1e-03),
                        "v neo method mismatch")
Ejemplo n.º 2
0
    def do_gsyn_no_constraint(self):
        synfire_run = SynfireRunner()
        synfire_run.do_run(n_neurons, neurons_per_core=neurons_per_core,
                           delay=delay, run_times=[runtime], record=False,
                           record_v=False, record_gsyn_exc_7=True,
                           record_gsyn_inh=False)
        gsyn_exc = synfire_run.get_output_pop_gsyn_exc_numpy()

        self.assertEqual(n_neurons * runtime, len(gsyn_exc))
        read_gsyn = numpy.loadtxt(gysn_file, delimiter=',')
        self.assertTrue(numpy.allclose(read_gsyn, gsyn_exc, rtol=1e-04),
                        "gsyn neo method mismatch")
Ejemplo n.º 3
0
    def do_spikes_no_constraint(self):
        synfire_run = SynfireRunner()
        synfire_run.do_run(n_neurons, neurons_per_core=neurons_per_core,
                           delay=delay, run_times=[runtime], record=True,
                           record_v=False, record_gsyn_exc_7=False,
                           record_gsyn_inh=False)
        spikes = synfire_run.get_output_pop_spikes_numpy()

        self.assertEqual(expected_spikes, len(spikes))
        spike_checker.synfire_spike_checker(spikes, n_neurons)
        read_spikes = numpy.loadtxt(spike_file, delimiter=',')
        self.assertTrue(numpy.allclose(read_spikes, spikes),
                        "spikes neo method mismatch")
    def test_all_no_constarint(self):
        synfire_run = SynfireRunner()
        synfire_run.do_run(n_neurons,
                           neurons_per_core=neurons_per_core,
                           delay=delay,
                           run_times=[runtime],
                           record=True,
                           record_7=True,
                           record_v=True,
                           record_v_7=True,
                           record_gsyn_exc=True,
                           record_gsyn_exc_7=True,
                           record_gsyn_inh=False)
        gsyn_exc_7 = synfire_run.get_output_pop_gsyn_exc_7()
        v_7 = synfire_run.get_output_pop_voltage_7()
        spikes_7 = synfire_run.get_output_pop_spikes_7()

        gsyn_exc = synfire_run.get_output_pop_gsyn_exc_numpy()
        v = synfire_run.get_output_pop_voltage_numpy()
        spikes = synfire_run.get_output_pop_spikes_numpy()

        self.assertEquals(n_neurons * runtime, len(gsyn_exc))
        read_gsyn = numpy.loadtxt(gysn_file, delimiter=',')
        if not numpy.allclose(read_gsyn, gsyn_exc_7):
            for g1, g2 in zip(read_gsyn, gsyn_exc_7):
                if not numpy.allclose(g1, g2, rtol=1e-04):
                    print(g1, g2, g1[2] - g2[2], (g1[2] - g2[2]) / g1[2])

        self.assertTrue(numpy.allclose(read_gsyn, gsyn_exc_7, rtol=1e-04),
                        "gsyn synakker method mismatch")
        self.assertTrue(numpy.allclose(read_gsyn, gsyn_exc, rtol=1e-04),
                        "gsyn neo method mismatch")

        self.assertEquals(n_neurons * runtime, len(v))
        read_v = numpy.loadtxt(v_file, delimiter=',')
        self.assertTrue(numpy.allclose(read_v, v_7, rtol=1e-03),
                        "v synakker method mismatch")
        self.assertTrue(numpy.allclose(read_v, v, rtol=1e-03),
                        "v neo method mismatch")

        self.assertEquals(expected_spikes, len(spikes))
        spike_checker.synfire_spike_checker(spikes, n_neurons)
        read_spikes = numpy.loadtxt(spike_file, delimiter=',')
        self.assertTrue(numpy.allclose(read_spikes, spikes_7),
                        "spikes synakker method mismatch")
        self.assertTrue(numpy.allclose(read_spikes, spikes),
                        "spikes neo method mismatch")
Ejemplo n.º 5
0
    def do_all_constraint(self):
        synfire_run = SynfireRunner()
        synfire_run.do_run(n_neurons, neurons_per_core=neurons_per_core,
                           delay=delay, run_times=[runtime],
                           placement_constraint=placement_constraint,
                           record=True, record_7=True, record_v=True,
                           record_v_7=True, record_gsyn_exc=True,
                           record_gsyn_exc_7=True, record_gsyn_inh=False)

        gsyn_exc = synfire_run.get_output_pop_gsyn_exc_numpy()
        v = synfire_run.get_output_pop_voltage_numpy()
        spikes = synfire_run.get_output_pop_spikes_numpy()

        self.assertEqual(n_neurons * runtime, len(gsyn_exc))
        read_gsyn = numpy.loadtxt(gysn_file, delimiter=',')
        self.assertTrue(numpy.allclose(read_gsyn, gsyn_exc, rtol=1e-04),
                        "gsyn neo method mismatch")

        self.assertEqual(n_neurons * runtime, len(v))
        read_v = numpy.loadtxt(v_file, delimiter=',')
        self.assertTrue(numpy.allclose(read_v, v, rtol=1e-03),
                        "v neo method mismatch")

        self.assertEqual(expected_spikes, len(spikes))
        spike_checker.synfire_spike_checker(spikes, n_neurons)
        read_spikes = numpy.loadtxt(spike_file, delimiter=',')
        self.assertTrue(numpy.allclose(read_spikes, spikes),
                        "spikes neo method mismatch")
Ejemplo n.º 6
0
    def do_sampling_rate(self):
        synfire_run = SynfireRunner()
        synfire_run.do_run(n_neurons, neurons_per_core=neurons_per_core,
                           delay=delay, run_times=[runtime], record=True,
                           record_7=True, record_v=True, record_v_7=True,
                           v_sampling_rate=2, gsyn_exc_sampling_rate=3,
                           record_gsyn_exc=True, record_gsyn_exc_7=True,
                           record_gsyn_inh=False)
        gsyn_exc_7 = synfire_run.get_output_pop_gsyn_exc_7()
        v_7 = synfire_run.get_output_pop_voltage_7()
        spikes_7 = synfire_run.get_output_pop_spikes_7()

        gsyn_exc = synfire_run.get_output_pop_gsyn_exc_numpy()
        v = synfire_run.get_output_pop_voltage_numpy()
        spikes = synfire_run.get_output_pop_spikes_numpy()

        read_gsyn = numpy.loadtxt(gysn_file, delimiter=',')
        small_gsyn = read_gsyn[read_gsyn[:, 1] % 3 == 0]
        self.assertEqual(len(small_gsyn), len(gsyn_exc_7))
        self.assertTrue(numpy.allclose(small_gsyn, gsyn_exc_7, rtol=1e-04),
                        "gsyn synakker method mismatch")
        self.assertTrue(numpy.allclose(small_gsyn, gsyn_exc, rtol=1e-04),
                        "gsyn neo method mismatch")

        self.assertEqual(n_neurons*(runtime/2), len(v))
        read_v = numpy.loadtxt(v_file, delimiter=',')
        small_v = read_v[read_v[:, 1] % 2 == 0]
        self.assertTrue(numpy.allclose(small_v, v_7, rtol=1e-03),
                        "v synakker method mismatch")
        self.assertTrue(numpy.allclose(small_v, v, rtol=1e-03),
                        "v neo method mismatch")

        self.assertEqual(expected_spikes, len(spikes))
        spike_checker.synfire_spike_checker(spikes, n_neurons)
        read_spikes = numpy.loadtxt(spike_file, delimiter=',')
        self.assertTrue(numpy.allclose(read_spikes, spikes_7),
                        "spikes synakker method mismatch")
        self.assertTrue(numpy.allclose(read_spikes, spikes),
                        "spikes neo method mismatch")
Ejemplo n.º 7
0
def do_run(seed=None):

    # Simulate using both simulators
    synfire_run = SynfireRunner()
    synfire_run.do_run(
        n_neurons=1, input_class=SpikeSourcePoisson, rate=noise_rate,
        start_time=0, duration=simtime, seed=seed,
        use_spike_connections=False,
        cell_params=cell_params, run_times=[simtime], record=True,
        record_v=True, randomise_v_init=True, record_input_spikes=True,
        weight_to_spike=0.4)

    s_pop_voltages = synfire_run.get_output_pop_voltage_numpy()
    s_pop_spikes = synfire_run.get_output_pop_spikes_numpy()
    noise_spike_times = synfire_run.get_spike_source_spikes_numpy()

    return noise_spike_times, s_pop_spikes, s_pop_voltages
    def get_before_and_after(self):
        synfire_run = SynfireRunner()
        synfire_run.do_run(n_neurons, neurons_per_core=neurons_per_core,
                           weight_to_spike=weight_to_spike, delay=delay,
                           placement_constraint=placement_constraint,
                           run_times=runtimes, get_weights=get_weights,
                           get_delays=get_delays)
        weights = synfire_run.get_weights()
        self.assertEqual(n_neurons, len(weights[0]))
        self.assertEqual(n_neurons, len(weights[1]))
        self.assertTrue(numpy.allclose(weights[0][0][2], weights[1][0][2]))

        delays = synfire_run.get_delay()
        self.assertEqual(n_neurons, len(delays[0]))
        self.assertEqual(n_neurons, len(delays[1]))
        self.assertTrue(numpy.allclose(delays[0][0][2], delays[1][0][2]))
Ejemplo n.º 9
0
        weights = synfire_run.get_weights()
        self.assertEqual(n_neurons, len(weights[0]))
        self.assertEqual(n_neurons, len(weights[1]))
        self.assertTrue(numpy.allclose(weights[0][0][2], weights[1][0][2]))

        delays = synfire_run.get_delay()
        self.assertEqual(n_neurons, len(delays[0]))
        self.assertEqual(n_neurons, len(delays[1]))
        self.assertTrue(numpy.allclose(delays[0][0][2], delays[1][0][2]))

    def test_get_before_and_after(self):
        self.runsafe(self.get_before_and_after)


if __name__ == '__main__':
    synfire_run = SynfireRunner()
    synfire_run.do_run(n_neurons,
                       neurons_per_core=neurons_per_core,
                       weight_to_spike=weight_to_spike,
                       delay=delay,
                       placement_constraint=placement_constraint,
                       run_times=runtimes,
                       get_weights=get_weights,
                       get_delays=get_delays)
    weights = synfire_run.get_weights()
    delays = synfire_run.get_delay()
    print("weights[0]")
    print(weights[0])
    print(weights[0].shape)
    print("weights[1]")
    print(weights[1])
"""
Synfirechain-like example
"""
from p8_integration_tests.base_test_case import BaseTestCase
from p8_integration_tests.scripts.synfire_run import SynfireRunner

nNeurons = 200  # number of neurons in each population
spike_times = [[0, 1050]]
run_times = [1000, 1000]
reset = False
new_pop = True
synfire_run = SynfireRunner()


class Synfire2RunNewPopIfCurrExpLower(BaseTestCase):
    def test_run(self):
        try:
            synfire_run.do_run(nNeurons,
                               spike_times=spike_times,
                               run_times=run_times,
                               reset=reset,
                               new_pop=new_pop)
        except NotImplementedError:
            # This is the current behaviour but would not be wrong if changed.
            print("Adding populations without reset not yet supported")


if __name__ == '__main__':
    synfire_run.do_run(nNeurons,
                       spike_times=spike_times,
                       run_times=run_times,
Ejemplo n.º 11
0
"""
Synfirechain-like example
"""
from p8_integration_tests.base_test_case import BaseTestCase
from p8_integration_tests.scripts.synfire_run import SynfireRunner
import spynnaker.plot_utils as plot_utils
import spynnaker.spike_checker as spike_checker


n_neurons = 200  # number of neurons in each population
neurons_per_core = n_neurons / 2
spike_times = [[0, 1050]]
runtimes = [1000, 500]
reset = False
synfire_run = SynfireRunner()


class Synfire2RunExtractionIfCurrExpLowerSecondRun(BaseTestCase):
    def test_run(self):
        synfire_run.do_run(n_neurons, neurons_per_core=neurons_per_core,
                           spike_times=spike_times, run_times=runtimes,
                           reset=reset)
        spikes = synfire_run.get_output_pop_spikes_list_numpy()

        self.assertEquals(53, len(spikes[0]))
        self.assertEquals(103, len(spikes[1]))
        spike_checker.synfire_spike_checker(spikes[0], n_neurons)
        spike_checker.synfire_multiple_lines_spike_checker(spikes[1],
                                                           n_neurons, 2)

"""
Synfirechain-like example
"""
from p8_integration_tests.base_test_case import BaseTestCase
from p8_integration_tests.scripts.synfire_run import SynfireRunner
import spynnaker.plot_utils as plot_utils
import spynnaker.spike_checker as spike_checker
from spynnaker8.utilities import neo_convertor, neo_compare
from spynnaker8.utilities.version_util import pynn8_syntax

nNeurons = 200  # number of neurons in each population
run_times = [1000, 500]
reset = True
synfire_run = SynfireRunner()


class Synfire1RunReset1RunSmallerRuntimeNoExtraction(BaseTestCase):
    def test_run(self):
        synfire_run.do_run(nNeurons,
                           run_times=run_times,
                           reset=reset,
                           get_all=True)
        neos = synfire_run.get_output_pop_all_list()
        spikes_0_0 = neo_convertor.convert_spikes(neos[0], 0)
        spikes_1_1 = neo_convertor.convert_spikes(neos[1], 1)
        self.assertEquals(53, len(spikes_0_0))
        self.assertEquals(27, len(spikes_1_1))
        spike_checker.synfire_spike_checker(spikes_0_0, nNeurons)
        spike_checker.synfire_spike_checker(spikes_1_1, nNeurons)
        # v + gsyn_exc + gsyn_ihn = 3 (spikes not in analogsignalarrays
        if pynn8_syntax:
Ejemplo n.º 13
0
                           delay=delay, run_times=[runtime], record=False,
                           record_v=False, record_gsyn_exc_7=True,
                           record_gsyn_inh=False)
        gsyn_exc = synfire_run.get_output_pop_gsyn_exc_numpy()

        self.assertEqual(n_neurons * runtime, len(gsyn_exc))
        read_gsyn = numpy.loadtxt(gysn_file, delimiter=',')
        self.assertTrue(numpy.allclose(read_gsyn, gsyn_exc, rtol=1e-04),
                        "gsyn neo method mismatch")

    def test_gsyn_no_constraint(self):
        self.runsafe(self.do_gsyn_no_constraint)


if __name__ == '__main__':
    synfire_run = SynfireRunner()
    synfire_run.do_run(n_neurons, neurons_per_core=neurons_per_core,
                       delay=delay, run_times=[runtime],
                       placement_constraint=placement_constraint, record=True,
                       record_7=True, record_v=True, record_v_7=True,
                       record_gsyn_exc=True, record_gsyn_exc_7=True,
                       record_gsyn_inh=False)

    gsyn_exc = synfire_run.get_output_pop_gsyn_exc_numpy()
    gsyn_exc_neo = synfire_run.get_output_pop_gsyn_exc_neo()
    v = synfire_run.get_output_pop_voltage_numpy()
    v_neo = synfire_run.get_output_pop_voltage_neo()
    spikes = synfire_run.get_output_pop_spikes_numpy()
    spikes_neo = synfire_run.get_output_pop_spikes_neo()

    numpy.savetxt(spike_file, spikes, delimiter=',')
Ejemplo n.º 14
0
n_neurons = 200  # number of neurons in each population
neurons_per_core = n_neurons / 2
run_times = [5000, 5000]
wrap_around = False
# parameters for population 1 first run
input_class = p.SpikeSourcePoisson
start_time = 0
duration = 5000.0
rate = 2.0
# parameters for population 2 first run
set_between_runs = [(1, 'duration', 0)]
extract_between_runs = False
record_input_spikes = True

synfire_run = SynfireRunner()


class TestSynfirePoissonIfCurrExpParameterTestSecondNone(BaseTestCase):
    def second_none(self):
        synfire_run.do_run(n_neurons,
                           neurons_per_core=neurons_per_core,
                           run_times=run_times,
                           use_wrap_around_connections=wrap_around,
                           input_class=input_class,
                           start_time=start_time,
                           duration=duration,
                           rate=rate,
                           extract_between_runs=extract_between_runs,
                           set_between_runs=set_between_runs,
                           record_input_spikes=record_input_spikes)
"""
Synfirechain-like example
"""
from p8_integration_tests.base_test_case import BaseTestCase
from p8_integration_tests.scripts.synfire_run import SynfireRunner
import spynnaker.plot_utils as plot_utils
import spynnaker.spike_checker as spike_checker

n_neurons = 200  # number of neurons in each population
runtime = 5000
neurons_per_core = n_neurons / 2
synfire_run = SynfireRunner()


class SynfireIfCurrExp(BaseTestCase):
    def test_run(self):
        synfire_run.do_run(n_neurons,
                           neurons_per_core=neurons_per_core,
                           run_times=[runtime],
                           seed=self._test_seed)
        spikes = synfire_run.get_output_pop_spikes_numpy()

        self.assertEquals(263, len(spikes))
        spike_checker.synfire_spike_checker(spikes, n_neurons)
        synfire_run.get_output_pop_gsyn_exc_numpy()
        synfire_run.get_output_pop_voltage_numpy()


if __name__ == '__main__':
    synfire_run.do_run(n_neurons,
                       neurons_per_core=neurons_per_core,
Ejemplo n.º 16
0
"""
Synfirechain-like example
"""
# general imports
from p8_integration_tests.scripts.synfire_run import SynfireRunner
from p8_integration_tests.base_test_case import BaseTestCase
import spynnaker.spike_checker as spike_checker
from spinnman.exceptions import SpinnmanTimeoutException
from unittest import SkipTest

n_neurons = 10  # number of neurons in each population
runtime = 50
synfire_run = SynfireRunner()


class TestGsyn(BaseTestCase):
    """
    tests the printing of get gsyn given a simulation
    """
    def test_get_gsyn(self):
        try:
            synfire_run.do_run(n_neurons,
                               max_delay=14.4,
                               time_step=0.1,
                               neurons_per_core=5,
                               delay=1.7,
                               run_times=[runtime])

            spikes = synfire_run.get_output_pop_spikes_numpy()
            # no check of spikes length as the system overloads
            spike_checker.synfire_spike_checker(spikes, n_neurons)
Ejemplo n.º 17
0
from __future__ import print_function
from p8_integration_tests.base_test_case import BaseTestCase
from p8_integration_tests.scripts.synfire_run import SynfireRunner
import spynnaker.plot_utils as plot_utils
import numpy

n_neurons = 200  # number of neurons in each population
neurons_per_core = n_neurons / 2
runtimes = [5000, 5000]
set_between_runs = [(0, 'i_offset', 30)]
synfire_run = SynfireRunner()
extract_between_runs = False


class TestGetGsyn(BaseTestCase):
    """
    tests the printing of get gsyn given a simulation
    """
    def test_get_gsyn(self):
        synfire_run.do_run(n_neurons,
                           neurons_per_core=neurons_per_core,
                           run_times=runtimes,
                           extract_between_runs=extract_between_runs,
                           set_between_runs=set_between_runs)
        spikes = synfire_run.get_output_pop_spikes_numpy()
        # Check spikes increase in second half by at least a factor of ten
        hist = numpy.histogram(spikes[:, 1], bins=[0, 5000, 10000])
        self.assertEquals(263, hist[0][0])
        self.assertEquals(333400, hist[0][1])

Ejemplo n.º 18
0
"""
Synfirechain-like example
"""
import spynnaker.plot_utils as plot_utils
import spynnaker.spike_checker as spike_checker
from p8_integration_tests.base_test_case import BaseTestCase
from p8_integration_tests.scripts.synfire_run import SynfireRunner

nNeurons = 200  # number of neurons in each population
neurons_per_core = 10
delay = 17
run_times = [5000]
get_weights = True
synfire_run = SynfireRunner()


class SynfireIfCurr_exp(BaseTestCase):

    def test_run(self):
        synfire_run.do_run(nNeurons, neurons_per_core=neurons_per_core,
                           delay=delay, run_times=run_times,
                           get_weights=get_weights)
        spikes = synfire_run.get_output_pop_spikes_numpy()
        weights = synfire_run.get_weights()

        self.assertEqual(263, len(spikes))
        self.assertEqual(200, len(weights))
        spike_checker.synfire_spike_checker(spikes, nNeurons)


if __name__ == '__main__':
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

"""
Synfirechain-like example
"""
# general imports
from spinn_front_end_common.utilities.exceptions import ConfigurationException
from p8_integration_tests.scripts.synfire_run import SynfireRunner
from p8_integration_tests.base_test_case import BaseTestCase

n_neurons = 10  # number of neurons in each population
runtime = 50
synfire_run = SynfireRunner()


class TestGsyn(BaseTestCase):
    """
    tests the printing of get gsyn given a simulation
    """

    def test_get_gsyn(self):
        with self.assertRaises(ConfigurationException):
            synfire_run.do_run(n_neurons, max_delay=14.4, time_step=0.1,
                               neurons_per_core=5, delay=1.7,
                               run_times=[runtime])


if __name__ == '__main__':
Ejemplo n.º 20
0
n_neurons = 200  # number of neurons in each population
neurons_per_core = n_neurons / 2
run_times = [5000, 5000]
# parameters for population 1 first run
input_class = p.SpikeSourcePoisson
start_time = 0
duration = 5000.0
rate = 2.0
# parameters for population 2 first run
set_between_runs = [(1, 'start', 5000),
                    (1, 'rate', 200.0),
                    (1, 'duration', 2000.0)]
extract_between_runs = False

synfire_run = SynfireRunner()


class TestSynfirePoissonIfCurrExpParameter(BaseTestCase):

    def synfire_poisson_if_curr_exp_parameter(self):
        synfire_run.do_run(n_neurons, neurons_per_core=neurons_per_core,
                           run_times=run_times, input_class=input_class,
                           start_time=start_time, duration=duration, rate=rate,
                           extract_between_runs=extract_between_runs,
                           set_between_runs=set_between_runs,
                           seed=12345)
        spikes = synfire_run.get_output_pop_spikes_numpy()
        # Check spikes increase in second half by at least a factor of ten
        hist = numpy.histogram(spikes[:, 1], bins=[0, 5000, 10000])
        self.assertLess(hist[0][0] * 10, hist[0][1])
Ejemplo n.º 21
0
"""
Synfirechain-like example
"""
from p8_integration_tests.base_test_case import BaseTestCase
from p8_integration_tests.scripts.synfire_run import SynfireRunner

import spynnaker.plot_utils as plot_utils
import spynnaker.spike_checker as spike_checker

nNeurons = 200  # number of neurons in each population
spike_times = [[0, 1050, 2200]]
run_times = [1000, 1000, 1000]
reset = False
extract_between_runs = False
synfire_run = SynfireRunner()


class Synfire3Rrun1ExitNoExtractionIfCurrExp(BaseTestCase):
    def test_run(self):
        synfire_run.do_run(nNeurons,
                           spike_times=spike_times,
                           run_times=run_times,
                           reset=reset,
                           extract_between_runs=extract_between_runs)
        spikes = synfire_run.get_output_pop_spikes_numpy()

        self.assertEquals(303, len(spikes))
        spike_checker.synfire_multiple_lines_spike_checker(spikes, nNeurons, 3)


if __name__ == '__main__':
Ejemplo n.º 22
0
from __future__ import print_function
"""
Synfirechain-like example
"""
from p8_integration_tests.base_test_case import BaseTestCase
from p8_integration_tests.scripts.synfire_run import SynfireRunner
import spynnaker.plot_utils as plot_utils
from spynnaker8.utilities import neo_convertor
import spynnaker.spike_checker as spike_checker
from six.moves import reduce

n_neurons = 200  # number of neurons in each population
runtimes = [1000, 1000, 1000, 1000, 1000]
neurons_per_core = n_neurons / 2
synfire_run = SynfireRunner()


class SynfireIfCurrExp(BaseTestCase):
    def test_run(self):
        synfire_run.do_run(n_neurons,
                           neurons_per_core=neurons_per_core,
                           run_times=runtimes,
                           record=True,
                           record_v=True,
                           record_gsyn_exc=True,
                           record_gsyn_inh=False)
        spikes_neos = synfire_run.get_output_pop_spikes_list()

        len0 = reduce(lambda x, y: x + y,
                      map(len, spikes_neos[0].segments[0].spiketrains))
        len1 = reduce(lambda x, y: x + y,
"""
Synfirechain-like example
"""
from p8_integration_tests.base_test_case import BaseTestCase
from p8_integration_tests.scripts.synfire_run import SynfireRunner
import spynnaker.plot_utils as plot_utils
import spynnaker.spike_checker as spike_checker
import spynnaker.gsyn_tools as gsyn_tools

n_neurons = 10  # number of neurons in each population
max_delay = 14.4
timestep = 1
neurons_per_core = n_neurons / 2
delay = 1.7
runtime = 50
synfire_run = SynfireRunner()


class TestGetGsyn(BaseTestCase):
    """
    tests the printing of get gsyn given a simulation
    """
    def test_get_gsyn(self):
        synfire_run.do_run(n_neurons,
                           max_delay=max_delay,
                           time_step=timestep,
                           neurons_per_core=neurons_per_core,
                           delay=delay,
                           run_times=[runtime])
        spikes = synfire_run.get_output_pop_spikes_numpy()
        gsyn = synfire_run.get_output_pop_gsyn_exc_numpy()
"""
Synfirechain-like example
"""
from p8_integration_tests.base_test_case import BaseTestCase
from p8_integration_tests.scripts.synfire_run import SynfireRunner
from testfixtures import LogCapture

nNeurons = 200  # number of neurons in each population
spike_times = [[0, 1050]]
run_times = [1000, 1000]
reset = False
synfire_run = SynfireRunner()


class Synfire2RunExtractionIfCurrExp(BaseTestCase):
    def test_run(self):
        with LogCapture() as lc:
            synfire_run.do_run(nNeurons, spike_times=spike_times,
                               run_times=run_times, reset=False)
            self.assert_logs_messages(
                lc.records, "Working out if machine is booted", 'INFO', 2)


if __name__ == '__main__':
    synfire_run.do_run(
        nNeurons, spike_times=spike_times, run_times=run_times, reset=False)
Ejemplo n.º 25
0
import os
from neo.io import PickleIO
import unittest
from p8_integration_tests.base_test_case import BaseTestCase
from p8_integration_tests.scripts.synfire_run import SynfireRunner
from spynnaker8.utilities import neo_compare

n_neurons = 200  # number of neurons in each population
runtime = 500
current_file_path = os.path.dirname(os.path.abspath(__file__))
current_v_file_path = os.path.join(current_file_path, "v.pickle")
max_delay = 14
timestep = 1
neurons_per_core = n_neurons / 2
delay = 1.7
synfire_run = SynfireRunner()


class TestPrintVoltage(BaseTestCase):
    """
    tests the printing of print v given a simulation
    """
    def test_print_voltage(self):
        """
        test that tests the printing of v from a pre determined recording
        :return:
        """
        synfire_run.do_run(n_neurons,
                           max_delay=max_delay,
                           time_step=timestep,
                           neurons_per_core=neurons_per_core,
Ejemplo n.º 26
0
Synfirechain-like example
"""
from p8_integration_tests.base_test_case import BaseTestCase
from p8_integration_tests.scripts.synfire_run import SynfireRunner

import spynnaker.plot_utils as plot_utils
import spynnaker.spike_checker as spike_checker
from spynnaker8.utilities import neo_convertor, neo_compare
from spynnaker8.utilities.version_util import pynn8_syntax

nNeurons = 200  # number of neurons in each population
spike_times = [[0, 1050]]
neurons_per_core = nNeurons / 2
runtimes = [1000, 2000]
reset = True
synfire_run = SynfireRunner()


class Synfire1RunReset1RunLargertRuntimeNoExtraction(BaseTestCase):
    def test_run(self):
        synfire_run.do_run(nNeurons,
                           spike_times=spike_times,
                           reset=reset,
                           run_times=runtimes,
                           neurons_per_core=neurons_per_core,
                           get_all=True)
        neos = synfire_run.get_output_pop_all_list()
        spikes_0_0 = neo_convertor.convert_spikes(neos[0], 0)
        spikes_1_1 = neo_convertor.convert_spikes(neos[1], 1)
        self.assertEquals(53, len(spikes_0_0))
        self.assertEquals(156, len(spikes_1_1))
"""
Synfirechain-like example
"""
# general imports
from p8_integration_tests.scripts.synfire_run import SynfireRunner
from p8_integration_tests.base_test_case import BaseTestCase

from spinn_front_end_common.utilities.exceptions import ConfigurationException

n_neurons = 20  # number of neurons in each population
runtime = 200
delay = 30
neurons_per_core = None
synfire_run = SynfireRunner()
record = False
get_spikes = True
record_v = False
get_gsyn_exc = False
get_gsyn_inh = False


class ExtractingSpikesWhenVOnlySetToRecord(BaseTestCase):
    """
    tests the printing of get gsyn given a simulation
    """
    def test_cause_error(self):
        with self.assertRaises(ConfigurationException):
            synfire_run.do_run(n_neurons,
                               neurons_per_core=neurons_per_core,
                               delay=delay,
                               run_times=[runtime],
"""
Synfirechain-like example
"""
from p8_integration_tests.base_test_case import BaseTestCase
from p8_integration_tests.scripts.synfire_run import SynfireRunner

import spynnaker.plot_utils as plot_utils
import spynnaker.spike_checker as spike_checker

nNeurons = 200  # number of neurons in each population
spike_times = [[0, 1050]]
run_times = [1000, 500]
reset = False
synfire_run = SynfireRunner()


class Synfire2RunExtractionIfCurrExpLower(BaseTestCase):
    def test_run(self):
        synfire_run.do_run(nNeurons,
                           spike_times=spike_times,
                           run_times=run_times,
                           reset=reset)
        spikes = synfire_run.get_output_pop_spikes_list_numpy()

        self.assertEquals(53, len(spikes[0]))
        self.assertEquals(103, len(spikes[1]))
        spike_checker.synfire_spike_checker(spikes[0], nNeurons)
        spike_checker.synfire_multiple_lines_spike_checker(
            spikes[1], nNeurons, 2)

#!/usr/bin/python
"""
Synfirechain-like example
"""
import spynnaker.plot_utils as plot_utils
import spynnaker.spike_checker as spike_checker
from p8_integration_tests.base_test_case import BaseTestCase
from p8_integration_tests.scripts.synfire_run import SynfireRunner

nNeurons = 6300  # number of neurons in each population
delay = 1
record_v = False
record_gsyn = False
synfire_run = SynfireRunner()


class Synfire200n10pc2chipsWithNoDelaysSpikeRecording(BaseTestCase):
    def test_run(self):
        self.assert_not_spin_three()
        synfire_run.do_run(nNeurons,
                           delay=delay,
                           record_v=record_v,
                           record_gsyn_exc=record_gsyn,
                           record_gsyn_inh=record_gsyn)
        spikes = synfire_run.get_output_pop_spikes_numpy()

        self.assertEqual(333, len(spikes))
        spike_checker.synfire_spike_checker(spikes, nNeurons)


if __name__ == '__main__':
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

"""
Synfirechain-like example
"""
import spynnaker.plot_utils as plot_utils
from p8_integration_tests.base_test_case import BaseTestCase
from p8_integration_tests.scripts.synfire_run import SynfireRunner

n_neurons = 200  # number of neurons in each population
runtime = 5000
neurons_per_core = n_neurons / 2
record = False
record_v = True
record_gsyn = False
synfire_run = SynfireRunner()


class SynfireIfCurrExp(BaseTestCase):

    def test_run(self):
        synfire_run.do_run(n_neurons, neurons_per_core=neurons_per_core,
                           run_times=[runtime], record=record,
                           record_v=record_v, record_gsyn_exc=record_gsyn)
        gsyn = synfire_run.get_output_pop_gsyn_exc_list()
        v = synfire_run.get_output_pop_voltage_list()
        spikes = synfire_run.get_output_pop_spikes_list()

        self.assertEqual(1, len(v))
        self.assertEqual(0, len(gsyn))
        self.assertEqual(0, len(spikes))