def dtw_classify_character(test_char, train_char_list):
	infinity = 2.0**32.0

	score_list = []
	count_list = []
	for i in range(0, 10):
		score_list.append(0)
		count_list.append(0)

	test_data_x = test_char._xseries
	test_data_x = data_transform.xstretch_data(test_data_x)
	test_data_x = data_transform.normalize_data(test_data_x)
	
	test_data_y = test_char._yseries
	test_data_y = data_transform.xstretch_data(test_data_y)
	test_data_y = data_transform.normalize_data(test_data_y)

	for i in range(train_char_list.shape[0]):

		train_char = train_char_list[i]

		train_data_x = train_char._xseries
		train_data_x = data_transform.xstretch_data(train_data_x)
		train_data_x = data_transform.normalize_data(train_data_x)
	
		train_data_y = train_char._yseries
		train_data_y = data_transform.xstretch_data(train_data_y)
		train_data_y = data_transform.normalize_data(train_data_y)
		

		print(train_data_y)
		
		

		distance_matrix_x = pDTW.get_distance_matrix_DTW(test_data_x, train_data_x)
		distance_matrix_y = pDTW.get_distance_matrix_DTW(test_data_y, train_data_y)

		

		cost_matrix_x = pDTW.get_cost_matrix(distance_matrix_x)
		cost_matrix_y = pDTW.get_cost_matrix(distance_matrix_y)


		#path_x = pDTW.get_warp_path(cost_matrix_x)
		#path_y = pDTW.get_warp_path(cost_matrix_y)

		

	


		cost_matrix_x_area = 1.0*cost_matrix_x.shape[0]*cost_matrix_x.shape[1]
		cost_matrix_y_area = 1.0*cost_matrix_y.shape[0]*cost_matrix_y.shape[1]

		score = cost_matrix_x[-1,-1]/cost_matrix_x_area + cost_matrix_y[-1,-1]/cost_matrix_y_area
		#print('identification = ' + str(train_char._classification))
		#print('score = ' + str(score))

		#if i < 3:
			#p_plot.save_plot_matrix(test_char._data_bw)
			#p_plot.save_plot_matrix(train_char._data_bw)
#
			#number_of_lines = path_x.shape[0]
			#nn = 1
			#offset = 2
			#plt.plot(train_data_x[:,0], train_data_x[:,1])
			#plt.plot(test_data_x[:,0], test_data_x[:,1] +offset)
			#for j in range(int(number_of_lines/nn) - 1):
				#plt.plot((test_data_x[path_x[j*nn,0],0],\
					#train_data_x[path_x[j*nn,1],0]),\
					#(test_data_x[path_x[j*nn,0],1] + offset,\
						#train_data_x[path_x[j*nn,1],1]))	
			#plt.show()
#
			#p_plot.save_plot_matrix_line(distance_matrix_x, path_x)
			#p_plot.save_plot_matrix_line(cost_matrix_x, path_x)
#
			#number_of_lines = path_y.shape[0]
			#nn = 1
			#offset = 2
			#plt.plot(train_data_y[:,0], train_data_y[:,1])
			#plt.plot(test_data_y[:,0], test_data_y[:,1] +offset)
			#for j in range(int(number_of_lines/nn) - 1):
				#plt.plot((test_data_y[path_y[j*nn,0],0],\
					#train_data_y[path_y[j*nn,1],0]),\
					#(test_data_y[path_y[j*nn,0],1] + offset,\
						#train_data_y[path_y[j*nn,1],1]))	
			#plt.show()
#
			#p_plot.save_plot_matrix_line(distance_matrix_y, path_y)
			#p_plot.save_plot_matrix_line(cost_matrix_y, path_y)


		if train_char_list[i]._classification == 0:
			score_list[0] = score_list[0] + score
			count_list[0] = count_list[0] + 1

		elif train_char_list[i]._classification == 1:
			score_list[1] = score_list[1] + score
			count_list[1] = count_list[1] + 1

		elif train_char_list[i]._classification == 2:
			score_list[2] = score_list[2] + score
			count_list[2] = count_list[2] + 1

		elif train_char_list[i]._classification == 3:
			score_list[3] = score_list[3] + score
			count_list[3] = count_list[3] + 1

		elif train_char_list[i]._classification == 4:
			score_list[4] = score_list[4] + score
			count_list[4] = count_list[4] + 1

		elif train_char_list[i]._classification == 5:
			score_list[5] = score_list[5] + score
			count_list[5] = count_list[5] + 1

		elif train_char_list[i]._classification == 6:
			score_list[6] = score_list[6] + score
			count_list[6] = count_list[6] + 1

		elif train_char_list[i]._classification == 7:
			score_list[7] = score_list[7] + score
			count_list[7] = count_list[7] + 1

		elif train_char_list[i]._classification == 8:
			score_list[8] = score_list[8] + score
			count_list[8] = count_list[8] + 1

		elif train_char_list[i]._classification == 9:
			score_list[9] = score_list[9] + score
			count_list[9] = count_list[9] + 1

	for i in range(0, 10):
		if count_list[i] != 0:
			score_list[i] = (1.0*score_list[i])/count_list[i]
		else:
			score_list[i] = infinity

	minim = infinity
	min_i = 11
	for i in range(0, 10):
		if score_list[i] < minim:
			minim = score_list[i]
			min_i = i

	test_char._predicted_classification = min_i
	for i in range(len(score_list)):
		print('i = ' + str(i) + '\t\t\t' + str(score_list[i]))

	print("test_char._predicted_classification = " + str(test_char._predicted_classification))
	print("test_char._classification = " + str(test_char._classification))
	return
Ejemplo n.º 2
0
def dtw_classify_character(test_char, train_char_list):
    infinity = 2.0**32.0

    score_list = []
    count_list = []
    for i in range(0, 10):
        score_list.append(0)
        count_list.append(0)

    test_data_x = test_char._xseries
    test_data_x = data_transform.xstretch_data(test_data_x)
    test_data_x = data_transform.normalize_data(test_data_x)

    test_data_y = test_char._yseries
    test_data_y = data_transform.xstretch_data(test_data_y)
    test_data_y = data_transform.normalize_data(test_data_y)

    for i in range(train_char_list.shape[0]):

        train_char = train_char_list[i]

        train_data_x = train_char._xseries
        train_data_x = data_transform.xstretch_data(train_data_x)
        train_data_x = data_transform.normalize_data(train_data_x)

        train_data_y = train_char._yseries
        train_data_y = data_transform.xstretch_data(train_data_y)
        train_data_y = data_transform.normalize_data(train_data_y)

        print(train_data_y)

        distance_matrix_x = pDTW.get_distance_matrix_DTW(
            test_data_x, train_data_x)
        distance_matrix_y = pDTW.get_distance_matrix_DTW(
            test_data_y, train_data_y)

        cost_matrix_x = pDTW.get_cost_matrix(distance_matrix_x)
        cost_matrix_y = pDTW.get_cost_matrix(distance_matrix_y)

        #path_x = pDTW.get_warp_path(cost_matrix_x)
        #path_y = pDTW.get_warp_path(cost_matrix_y)

        cost_matrix_x_area = 1.0 * cost_matrix_x.shape[
            0] * cost_matrix_x.shape[1]
        cost_matrix_y_area = 1.0 * cost_matrix_y.shape[
            0] * cost_matrix_y.shape[1]

        score = cost_matrix_x[-1, -1] / cost_matrix_x_area + cost_matrix_y[
            -1, -1] / cost_matrix_y_area
        #print('identification = ' + str(train_char._classification))
        #print('score = ' + str(score))

        #if i < 3:
        #p_plot.save_plot_matrix(test_char._data_bw)
        #p_plot.save_plot_matrix(train_char._data_bw)
        #
        #number_of_lines = path_x.shape[0]
        #nn = 1
        #offset = 2
        #plt.plot(train_data_x[:,0], train_data_x[:,1])
        #plt.plot(test_data_x[:,0], test_data_x[:,1] +offset)
        #for j in range(int(number_of_lines/nn) - 1):
        #plt.plot((test_data_x[path_x[j*nn,0],0],\
        #train_data_x[path_x[j*nn,1],0]),\
        #(test_data_x[path_x[j*nn,0],1] + offset,\
        #train_data_x[path_x[j*nn,1],1]))
        #plt.show()
        #
        #p_plot.save_plot_matrix_line(distance_matrix_x, path_x)
        #p_plot.save_plot_matrix_line(cost_matrix_x, path_x)
        #
        #number_of_lines = path_y.shape[0]
        #nn = 1
        #offset = 2
        #plt.plot(train_data_y[:,0], train_data_y[:,1])
        #plt.plot(test_data_y[:,0], test_data_y[:,1] +offset)
        #for j in range(int(number_of_lines/nn) - 1):
        #plt.plot((test_data_y[path_y[j*nn,0],0],\
        #train_data_y[path_y[j*nn,1],0]),\
        #(test_data_y[path_y[j*nn,0],1] + offset,\
        #train_data_y[path_y[j*nn,1],1]))
        #plt.show()
        #
        #p_plot.save_plot_matrix_line(distance_matrix_y, path_y)
        #p_plot.save_plot_matrix_line(cost_matrix_y, path_y)

        if train_char_list[i]._classification == 0:
            score_list[0] = score_list[0] + score
            count_list[0] = count_list[0] + 1

        elif train_char_list[i]._classification == 1:
            score_list[1] = score_list[1] + score
            count_list[1] = count_list[1] + 1

        elif train_char_list[i]._classification == 2:
            score_list[2] = score_list[2] + score
            count_list[2] = count_list[2] + 1

        elif train_char_list[i]._classification == 3:
            score_list[3] = score_list[3] + score
            count_list[3] = count_list[3] + 1

        elif train_char_list[i]._classification == 4:
            score_list[4] = score_list[4] + score
            count_list[4] = count_list[4] + 1

        elif train_char_list[i]._classification == 5:
            score_list[5] = score_list[5] + score
            count_list[5] = count_list[5] + 1

        elif train_char_list[i]._classification == 6:
            score_list[6] = score_list[6] + score
            count_list[6] = count_list[6] + 1

        elif train_char_list[i]._classification == 7:
            score_list[7] = score_list[7] + score
            count_list[7] = count_list[7] + 1

        elif train_char_list[i]._classification == 8:
            score_list[8] = score_list[8] + score
            count_list[8] = count_list[8] + 1

        elif train_char_list[i]._classification == 9:
            score_list[9] = score_list[9] + score
            count_list[9] = count_list[9] + 1

    for i in range(0, 10):
        if count_list[i] != 0:
            score_list[i] = (1.0 * score_list[i]) / count_list[i]
        else:
            score_list[i] = infinity

    minim = infinity
    min_i = 11
    for i in range(0, 10):
        if score_list[i] < minim:
            minim = score_list[i]
            min_i = i

    test_char._predicted_classification = min_i
    for i in range(len(score_list)):
        print('i = ' + str(i) + '\t\t\t' + str(score_list[i]))

    print("test_char._predicted_classification = " +
          str(test_char._predicted_classification))
    print("test_char._classification = " + str(test_char._classification))
    return
Ejemplo n.º 3
0
five_1._perimeter_path = ms.walk_around_ccw(five_1._data_bw)
five_1._xseries = ms.convert_path_to_xseries(five_1._perimeter_path)



five_0_x = five_0._xseries
five_0_x = data_transform.stretch_data_x(five_0_x)
five_0_x = data_transform.normalize_data(five_0_x)

five_1_x = five_1._xseries
five_1_x = data_transform.stretch_data_x(five_1_x)
five_1_x = data_transform.normalize_data(five_1_x)



distance_matrix_x = pDTW.get_distance_matrix_DTW(five_0_x, five_1_x)



cost_matrix_x = pDTW.get_cost_matrix(distance_matrix_x)
path_x = pDTW.get_warp_path(cost_matrix_x)

p_plot.save_plot_matrix_line(distance_matrix_x, path_x)
p_plot.save_plot_matrix_line(cost_matrix_x, path_x)

offset_1 = 1

for i in range(five_1_x.shape[0]):
	five_1_x[i][1] = five_1_x[i][1] + offset_1

fig = plt.figure()