def __init__(self, index, mdp, discountRate=0.9, iters=100, **kwargs):
        super().__init__(index)

        self.mdp = mdp
        self.discountRate = discountRate
        self.iters = iters
        self.values = counter.Counter()  # A Counter is a dict with default 0

        # Compute the values here.

        # Number of iterations
        for i in range(self.iters):
            values_temp = copy.deepcopy(self.values)

            for state in self.mdp.getStates():
                Qvalue = counter.Counter()

                if self.mdp.isTerminal(state):
                    continue
                    # Qvalue = counter.Counter()

                for action in self.mdp.getPossibleActions(state):

                    for nextState, prob in self.mdp.getTransitionStatesAndProbs(
                            state, action):

                        R = self.mdp.getReward(state, action, nextState)
                        discount = self.discountRate
                        Qvalue[action] += prob * (R +
                                                  (discount *
                                                   (values_temp[nextState])))

                    self.values[state] = Qvalue[Qvalue.argMax()]
Ejemplo n.º 2
0
    def __init__(self, index,
                 extractor='pacai.core.featureExtractors.IdentityExtractor', **kwargs):
        super().__init__(index, **kwargs)
        self.featExtractor = reflection.qualifiedImport(extractor)

        # You might want to initialize weights here.
        self.weights = counter.Counter()
Ejemplo n.º 3
0
    def getFeatures(self, gameState, action):
        features = counter.Counter()
        successor = self.getSuccessor(gameState, action)
        features['successorScore'] = self.getScore(successor)

        myPos = successor.getAgentState(self.index).getPosition()

        # Compute distance to the nearest Capsule #
        capsules = self.getCapsules(gameState)
        if len(capsules) > 0:
            capDistance = min(
                [self.getMazeDistance(myPos, capsule) for capsule in capsules])
            features['capsuleDistance'] = capDistance
        else:
            features['capsuleDistance'] = 0

        # Compute distance to nearest ghost (usually a defender goalie) #
        # enemies = [gameState.getAgentState(i) for i in self.getOpponents(gameState)]
        # chasers = [a for a in enemies if not a.isPacman() and a.getPosition() is not None]
        # uncomment this for invader information
        # invaders = [a for a in enemies if a.isPacman() and a.getPosition() is not None]

        # Compute distance to the nearest food.
        foodList = self.getFood(successor).asList()

        if (len(foodList) > 0):
            minDist = min(
                [self.getMazeDistance(myPos, food) for food in foodList])
            features['DistanceToFoodTarget'] = minDist

        return features
    def getFeatures(self, gameState, action):
        features = counter.Counter()
        successor = self.getSuccessor(gameState, action)
        features['successorScore'] = self.getScore(successor)

        food = self.getFood(successor)
        foodList = food.asList()

        if (len(foodList) > 0):
            myPos = successor.getAgentState(self.index).getPosition()
            minDistance = min(
                [self.getMazeDistance(myPos, food) for food in foodList])
            features['distanceToFood'] = minDistance

        opponents = self.getOpponents(gameState)
        agentState = gameState.getAgentState(self.index)
        myPos = agentState.getPosition()
        closeGhosts = 0
        for opponent in opponents:
            opponentPos = gameState.getAgentState(opponent).getPosition()
            if self.getMazeDistance(myPos, opponentPos) < 2:
                closeGhosts += 1
        features['closeGhosts'] = closeGhosts

        foodAtMyPos = food[int(myPos[0])][int(myPos[1])]
        if not closeGhosts and foodAtMyPos:
            features['eatFood'] = 1.0

        return features
Ejemplo n.º 5
0
    def getFeatures(self, state, action):
        # Extract the grid of food and wall locations and get the ghost locations.
        food = state.getFood()
        walls = state.getWalls()
        ghosts = state.getGhostPositions()

        features = counter.Counter()

        features["bias"] = 1.0

        # Compute the location of pacman after he takes the action.
        x, y = state.getPacmanPosition()
        dx, dy = Actions.directionToVector(action)
        next_x, next_y = int(x + dx), int(y + dy)

        # Count the number of ghosts 1-step away.
        features["#-of-ghosts-1-step-away"] = sum(
            (next_x, next_y) in Actions.getLegalNeighbors(g, walls)
            for g in ghosts)

        # If there is no danger of ghosts then add the food feature.
        if not features["#-of-ghosts-1-step-away"] and food[next_x][next_y]:
            features["eats-food"] = 1.0

        prob = AnyFoodSearchProblem(state, start=(next_x, next_y))
        dist = len(search.bfs(prob))
        if dist is not None:
            # Make the distance a number less than one otherwise the update will diverge wildly.
            features["closest-food"] = float(dist) / (walls.getWidth() *
                                                      walls.getHeight())

        features.divideAll(10.0)
        return features
Ejemplo n.º 6
0
    def __init__(self, index, mdp, discountRate=0.9, iters=100, **kwargs):
        super().__init__(index, **kwargs)

        self.mdp = mdp
        self.discountRate = discountRate
        self.iters = iters
        self.values = counter.Counter()  # A Counter is a dict with default 0

        # Compute the values here.
        states = mdp.getStates()
        for i in range(iters):
            vals = counter.Counter()
            for state in states:
                action = self.getAction(state)
                if action:
                    vals[state] = self.getQValue(state, action)
            self.values = vals
Ejemplo n.º 7
0
    def __init__(self, index, mdp, discountRate=0.9, iters=100, **kwargs):
        super().__init__(index)

        self.mdp = mdp
        self.discountRate = discountRate
        self.iters = iters
        self.values = counter.Counter()  # A Counter is a dict with default 0

        # Compute the values here.
        # FIXME: can be more efficient, getQValue is called twice.
        for i in range(iters):
            newVals = counter.Counter()
            for state in mdp.getStates():
                bestAction = self.getAction(state)
                if bestAction is not None:
                    newVals[state] = self.getQValue(state, bestAction)
            self.values = newVals.copy()
Ejemplo n.º 8
0
    def getFeatures(self, gameState, action):
        features = counter.Counter()
        successor = gameState

        myState = successor.getAgentState(self.index)
        myPos = myState.getPosition()

        # Computes whether we're on defense (1) or offense (0).
        features['onDefense'] = 1
        if (myState.isPacman()):
            features['onDefense'] = 0

        features['successorScore'] = 0
        features['distanceToFood'] = 0

        # Computes distance to invaders we can see.
        enemies = [
            successor.getAgentState(i) for i in self.getOpponents(successor)
        ]
        invaders = [
            a for a in enemies if a.isPacman() and a.getPosition() is not None
        ]
        features['numInvaders'] = len(invaders)

        if (len(invaders) > 0):
            dists = [
                self.getMazeDistance(myPos, a.getPosition()) for a in invaders
            ]
            features['invaderDistance'] = min(dists)
            features['onDefense'] = 1
        else:
            features['onDefense'] = 0
            myPos = successor.getAgentState(self.index).getPosition()
            foodList = self.getFood(successor).asList()
            minDistance = min(
                [self.getMazeDistance(myPos, food) for food in foodList])
            features['distanceToFood'] = minDistance
            features['successorScore'] = self.getScore(successor)
            features['invaderDistance'] = 0

        team = []
        if successor.isOnBlueTeam(self.index):
            team = successor.getBlueTeamIndices()
        else:
            team = successor.getRedTeamIndices()
        teammate = -1
        for num in team:
            if num != self.index:
                teammate = num
        otherAgent = successor.getAgentState(teammate)
        otherPos = otherAgent.getPosition()
        teamDist = self.getMazeDistance(myPos, otherPos)
        if teamDist == 0:
            features['teammateDist'] = 10
        else:
            features['teammateDist'] = 1 / teamDist

        return features
Ejemplo n.º 9
0
    def getFeatures(self, gameState, action):
        features = counter.Counter()
        successor = self.getSuccessor(gameState, action)

        myState = successor.getAgentState(self.index)
        myPos = myState.getPosition()
        # Computes whether we're on defense (1) or offense (0).
        features['onDefense'] = 1
        if (myState.isPacman()):
            features['onDefense'] = 0
        else:
            features['isGhost'] = 1

        # Computes distance to invaders we can see.
        enemies = [
            successor.getAgentState(i) for i in self.getOpponents(successor)
        ]
        invaders = [
            a for a in enemies if a.isPacman() and a.getPosition() is not None
        ]
        features['numInvaders'] = len(invaders)

        if (len(invaders) > 0):
            dists = [
                self.getMazeDistance(myPos, a.getPosition()) for a in invaders
            ]
            features['invaderDistance'] = min(dists)
            if min(dists) <= 1 and successor.getAgentState(
                    self.index).isScared():
                features['suicide'] = 1

        enemies = self.getOpponents(gameState)
        defenders = []
        attackers = []
        d = 0
        for enemy in enemies:
            if gameState.getAgentState(enemy).isPacman():
                attackers.append(gameState.getAgentState(enemy))
                global assumedAttacker
                assumedAttacker = enemy
                global test
                test = 1
            else:
                defenders.append(gameState.getAgentState(enemy))
                d = enemy
        # Make defender not wait right on border
        if test == 1 and len(attackers) == 0:
            attackerState = successor.getAgentState(assumedAttacker)
            attPos = attackerState.getPosition()
            targetDest = midpointTiles[int(attPos[1])]
            features['chaser'] = self.getMazeDistance(targetDest, myPos)
        if len(attackers) == 0 and test == 0:
            attackerState = successor.getAgentState(d)
            attPos = attackerState.getPosition()
            targetDest = midpointTiles[int(attPos[1])]
            features['chaser'] = self.getMazeDistance(targetDest, myPos)
        return features
Ejemplo n.º 10
0
    def getPolicy(self, state):
        # FIXME: not sure if this is even needed
        if self.mdp.isTerminal(state):
            return None

        memo = counter.Counter()
        for action in self.mdp.getPossibleActions(state):
            memo[action] = self.getQValue(state, action)
        return memo.argMax()
Ejemplo n.º 11
0
 def displayValues(self, agent, currentState=None, message='Agent Values'):
     values = counter.Counter()
     policy = {}
     states = self.gridworld.getStates()
     for state in states:
         values[state] = agent.getValue(state)
         policy[state] = agent.getPolicy(state)
     drawValues(self.gridworld, values, policy, currentState, message)
     utils.sleep(0.05 / self.speed)
Ejemplo n.º 12
0
    def getFeatures(self, gameState, action):
        features = counter.Counter()
        successor = self.getSuccessor(gameState, action)

        myState = successor.getAgentState(self.index)
        myPos = myState.getPosition()

        # Computes whether we're on defense (1) or offense (0).
        features['onDefense'] = 1
        if (myState.isPacman()):
            features['onDefense'] = 0

        enemies = [
            successor.getAgentState(i) for i in self.getOpponents(successor)
        ]

        # Compute distance to nearest ghost (before it is invading)
        ghosts = [
            a for a in enemies
            if not a.isPacman() and a.getPosition() is not None
        ]
        if len(ghosts) > 0:
            dists = [
                self.getMazeDistance(myPos, a.getPosition()) for a in ghosts
            ]
            features['ghostDist'] = min(dists)

        # Computes distance to invaders we can see.
        invaders = [
            a for a in enemies if a.isPacman() and a.getPosition() is not None
        ]
        features['numInvaders'] = len(invaders)
        if (len(invaders) > 0):
            dists = [
                self.getMazeDistance(myPos, a.getPosition()) for a in invaders
            ]
            features['invaderDistance'] = min(dists)
        """ # Abbas put this in here for some reason, it doesn't seem to do anything yet
             closestDistance = dists[0]
             position = [a.getPosition() for a in invaders]
             closestPosition = position[0]

             for i in range(len(dists)):
                 if dists[i] < closestDistance:
                     closestDistance = dists[i]
                     closestPosition = position[i]
        """
        if (action == Directions.STOP):
            features['stop'] = 1

        rev = Directions.REVERSE[gameState.getAgentState(
            self.index).getDirection()]
        if (action == rev):
            features['reverse'] = 1

        return features
Ejemplo n.º 13
0
    def __init__(self, index, mdp, discountRate=0.9, iters=100, **kwargs):
        super().__init__(index)

        self.mdp = mdp
        self.discountRate = discountRate
        self.iters = iters
        self.values = counter.Counter()  # A Counter is a dict with default 0

        # Compute the values here.
        raise NotImplementedError()
Ejemplo n.º 14
0
 def displayNullValues(self, currentState=None, message=''):
     values = counter.Counter()
     # policy = {}
     states = self.gridworld.getStates()
     for state in states:
         values[state] = 0.0
         # policy[state] = agent.getPolicy(state)
     drawNullValues(self.gridworld, currentState, '')
     # drawValues(self.gridworld, values, policy, currentState, message)
     utils.sleep(0.05 / self.speed)
Ejemplo n.º 15
0
    def displayQValues(self,
                       agent,
                       currentState=None,
                       message='Agent Q-Values'):
        qValues = counter.Counter()
        states = self.gridworld.getStates()

        for state in states:
            for action in self.gridworld.getPossibleActions(state):
                qValues[(state, action)] = agent.getQValue(state, action)

        drawQValues(self.gridworld, qValues, currentState, message)
        utils.sleep(0.05 / self.speed)
    def getPolicy(self, state):

        if self.mdp.isTerminal(state):
            return None

        possibleActions = self.mdp.getPossibleActions(state)

        Qvalue = counter.Counter()

        for action in possibleActions:
            Qvalue[action] = self.getQValue(state, action)

        return Qvalue.argMax()
    def getFeatures(self, gameState, action):
        features = counter.Counter()
        successor = self.getSuccessor(gameState, action)

        myState = successor.getAgentState(self.index)
        myPos = myState.getPosition()

        borders = successor.getWalls()
        midWidth = math.floor(borders.getWidth() / 2)

        yValue = random.randint(0, borders.getHeight() - 1)
        midPoint = (midWidth, yValue)

        while successor.hasWall(midWidth, yValue):

            yValue = random.randint(0, borders.getHeight() - 1)
            midPoint = (midWidth, yValue)

        # Computes whether we're on defense (1) or offense (0).
        features['onDefense'] = 1
        if (myState.isPacman()):
            features['onDefense'] = 0

        # Computes distance to invaders we can see.
        enemies = [
            successor.getAgentState(i) for i in self.getOpponents(successor)
        ]
        invaders = [
            a for a in enemies if a.isPacman() and a.getPosition() is not None
        ]
        features['numInvaders'] = len(invaders)

        if len(invaders) == 0:
            distanceToMid = self.getMazeDistance(myPos, midPoint)
            features['distanceToMiddle'] = distanceToMid
        else:
            features['distanceToMiddle'] = 0
            dists = [
                self.getMazeDistance(myPos, a.getPosition()) for a in invaders
            ]
            features['invaderDistance'] = min(dists)

        if (action == Directions.STOP):
            features['stop'] = 1

        rev = Directions.REVERSE[gameState.getAgentState(
            self.index).getDirection()]
        if (action == rev):
            features['reverse'] = 1

        return features
Ejemplo n.º 18
0
def drawQValues(gridworld,
                qValues,
                currentState=None,
                message='State-Action Q-Values'):
    grid = gridworld.grid
    blank()

    stateCrossActions = [[(state, action)
                          for action in gridworld.getPossibleActions(state)]
                         for state in gridworld.getStates()]
    qStates = functools.reduce(lambda x, y: x + y, stateCrossActions, [])
    qValueList = [qValues[(state, action)]
                  for state, action in qStates] + [0.0]
    minValue = min(qValueList)
    maxValue = max(qValueList)

    for x in range(grid.width):
        for y in range(grid.height):
            state = (x, y)
            gridType = grid[x][y]
            isExit = (str(gridType) != gridType)
            isCurrent = (currentState == state)

            actions = gridworld.getPossibleActions(state)
            if (actions is None or len(actions) == 0):
                actions = [None]

            q = counter.Counter()
            valStrings = {}

            for action in actions:
                v = qValues[(state, action)]
                q[action] += v
                valStrings[action] = '%.2f' % v

            if gridType == '#':
                drawSquare(x, y, 0, 0, 0, None, None, True, False, isCurrent)
            elif isExit:
                action = 'exit'
                value = q[action]
                valString = '%.2f' % value
                drawSquare(x, y, value, minValue, maxValue, valString, action,
                           False, isExit, isCurrent)
            else:
                drawSquareQ(x, y, q, minValue, maxValue, valStrings, actions,
                            isCurrent)

    pos = to_screen(((grid.width - 1.0) / 2.0, -0.8))
    utils.text(pos, TEXT_COLOR, message, "Courier", -32, "bold", "c")
Ejemplo n.º 19
0
    def getFeatures(self, gameState, action):
        features = counter.Counter()
        successor = self.getSuccessor(gameState, action)
        features['successorScore'] = self.getScore(successor)

        # Compute distance to the nearest food.
        foodList = self.getFood(successor).asList()

        # This should always be True, but better safe than sorry.
        if (len(foodList) > 0):
            myPos = successor.getAgentState(self.index).getPosition()
            minDistance = min([self.getMazeDistance(myPos, food) for food in foodList])
            features['distanceToFood'] = minDistance

        return features
Ejemplo n.º 20
0
 def __init__(self, index, mdp, discountRate = 0.9, iters = 100, **kwargs):
     super().__init__(index)
     self.mdp = mdp
     self.discountRate = discountRate
     self.iters = iters
     self.values = counter.Counter()  # A Counter is a dict with default 0
     copyOfValues = self.values.copy()
     for i in range(self.iters):
         states = self.mdp.getStates()
         for state in states:
             if not self.mdp.isTerminal(state):
                 move = self.getPolicy(state)
                 qValue = self.getQValue(state, move)
                 copyOfValues[state] = qValue
         for state in states:
             self.values[state] = copyOfValues[state]
    def getFeatures(self, agent, gameState, action):
        features = counter.Counter()

        successor = gameState
        features['successorScore'] = self.getScore(successor)

        food = self.getFood(successor)
        foodList = food.asList()

        if (len(foodList) > 0):
            myPos = successor.getAgentState(self.index).getPosition()
            minDistance = min(
                [self.getMazeDistance(myPos, food) for food in foodList])
            features['distanceToFood'] = minDistance

        opponents = self.getOpponents(gameState)
        agentState = gameState.getAgentState(self.index)
        myPos = agentState.getPosition()
        closeGhosts = 0
        for opponent in opponents:
            opponentPos = gameState.getAgentState(opponent).getPosition()
            if self.getMazeDistance(myPos, opponentPos) < 2:
                closeGhosts += 1
        features['closeGhosts'] = closeGhosts

        foodAtMyPos = food[int(myPos[0])][int(myPos[1])]
        if not closeGhosts and foodAtMyPos:
            features['eatFood'] = 1.0

        # ATTACK FEATURE
        capsules = self.getCapsules(gameState)
        powerPills = [self.getMazeDistance(myPos, pill) for pill in capsules]
        if len(powerPills) > 0:
            eatPill = min(powerPills)
        else:
            eatPill = 0

        if closeGhosts > 0:
            features['eatPill'] = eatPill
            features['eatFood'] = 0
        else:
            features['eatPill'] = 0

        return features
Ejemplo n.º 22
0
    def getDistribution(self, state):
        # Read variables from state.
        ghostState = state.getGhostState(self.index)
        legalActions = state.getLegalActions(self.index)
        pos = state.getGhostPosition(self.index)
        isScared = ghostState.isScared()

        speed = 1
        if (isScared):
            speed = 0.5

        actionVectors = [
            Actions.directionToVector(a, speed) for a in legalActions
        ]
        newPositions = [(pos[0] + a[0], pos[1] + a[1]) for a in actionVectors]
        pacmanPosition = state.getPacmanPosition()

        # Select best actions given the state.
        distancesToPacman = [
            distance.manhattan(pos, pacmanPosition) for pos in newPositions
        ]
        if (isScared):
            bestScore = max(distancesToPacman)
            bestProb = self.prob_scaredFlee
        else:
            bestScore = min(distancesToPacman)
            bestProb = self.prob_attack

        zipActions = zip(legalActions, distancesToPacman)
        bestActions = [
            action for action, distance in zipActions if distance == bestScore
        ]

        # Construct distribution.
        dist = counter.Counter()

        for a in bestActions:
            dist[a] = float(bestProb) / len(bestActions)

        for a in legalActions:
            dist[a] += float(1 - bestProb) / len(legalActions)

        dist.normalize()
        return dist
Ejemplo n.º 23
0
    def getFeatures(self, state, action):
        features = counter.Counter()
        successor = self.getSuccessor(state, action)

        myState = successor.getAgentState(self.index)
        myPos = myState.getPosition()

        # Computes whether we're on defense (1) or offense (0).
        features['onDefense'] = 1
        if (myState.isPacman()):
            features['onDefense'] = 0

        # Computes distance to invaders we can see.
        enemies = [
            successor.getAgentState(i) for i in self.getOpponents(successor)
        ]
        invaders = [
            a for a in enemies if a.isPacman() and a.getPosition() is not None
        ]
        features['numInvaders'] = len(invaders)

        if (len(invaders) > 0):
            dists = [
                self.getMazeDistance(myPos, a.getPosition()) for a in invaders
            ]
            features['invaderDistance'] = min(dists)
        else:
            if state.isOnBlueTeam(self.index):
                foods = state.getBlueFood().asList()
                features['stayFront'] = self.getMazeDistance(myPos, foods[0])
            else:
                foods = state.getRedFood().asList()
                features['stayFront'] = self.getMazeDistance(myPos, foods[-1])

        if (action == Directions.STOP):
            features['stop'] = 1

        rev = Directions.REVERSE[state.getAgentState(
            self.index).getDirection()]
        if (action == rev):
            features['reverse'] = 1

        return features
Ejemplo n.º 24
0
    def getFeatures(self, state):
        food = self.getFood(state)
        capsules = self.getCapsules(state)
        features = counter.Counter()

        features['score'] = self.getScore(state)

        opponents = self.getOpponents(state)
        myState = state.getAgentState(self.index)
        myPos = myState.getPosition()
        closeGhosts = 0
        for opponent in opponents:
            opponentPos = state.getAgentState(opponent).getPosition()
            if self.getMazeDistance(myPos, opponentPos) < 2:
                closeGhosts += 1
        features['#-of-ghosts-1-step-away'] = closeGhosts

        foodAtMyPos = food[int(myPos[0])][int(myPos[1])]
        if not closeGhosts and foodAtMyPos:
            features['eats-food'] = 10.0

        foodDist = []
        for x in range(food.getWidth()):
            for y in range(food.getHeight()):
                if food[x][y]:
                    foodDist.append(self.getMazeDistance(myPos, (x, y)))
        features['closest-food'] = min(foodDist)

        # ATTACK FEATURE
        powerPills = [self.getMazeDistance(myPos, pill) for pill in capsules]
        if len(powerPills) > 0:
            eatPill = min(powerPills)
        else:
            eatPill = 0

        if closeGhosts > 0:
            features['eat-Pill'] = eatPill
            features['eats-food'] = 0
        else:
            features['eat-Pill'] = 0

        return features
Ejemplo n.º 25
0
    def getFeatures(self, gameState, action):
        features = counter.Counter()
        successor = self.getSuccessor(gameState, action)

        agentState = successor.getAgentState(self.index)
        agentPos = agentState.getPosition()

        # Computes whether we're on defense (1) or offense (0).
        features['onDefense'] = 1
        if (agentState.isPacman()):
            features['onDefense'] = 0

        # Computes distance to invaders we can see.
        opponents = [
            successor.getAgentState(i) for i in self.getOpponents(successor)
        ]
        enemies = [
            opponent for opponent in opponents
            if opponent.getPosition() is not None
        ]
        invaders = [enemy for enemy in enemies if enemy.isPacman()]

        if (len(enemies) > 0):
            dists = [
                self.getMazeDistance(agentPos, a.getPosition())
                for a in enemies
            ]
            features['invaderDistance'] = min(dists)
        elif (len(invaders) > 0):
            dists = [
                self.getMazeDistance(agentPos, a.getPosition())
                for a in invaders
            ]
            features['invaderDistance'] = min(dists)

        rev = Directions.REVERSE[gameState.getAgentState(
            self.index).getDirection()]
        if (action == rev):
            features['reverse'] = 1
        return features
Ejemplo n.º 26
0
    def getFeatures(self, gameState):
        features = counter.Counter()
        features['successorScore'] = self.getScore(gameState)

        # FIXME: extract more features here.
        myPos = gameState.getAgentState(self.index).getPosition()

        # Compute distance to the nearest food.
        foodList = self.getFood(gameState).asList()
        if (len(foodList) > 0):
            minDist = min(
                [self.getMazeDistance(myPos, food) for food in foodList])
            features['DistanceToFoodTarget'] = minDist

        # Compute distance to the nearest Capsule #
        capsules = self.getCapsules(gameState)
        if len(capsules) > 0:
            capDistance = min(
                [self.getMazeDistance(myPos, capsule) for capsule in capsules])
            features['capsuleDistance'] = capDistance
        else:
            features['capsuleDistance'] = 0

        return features
Ejemplo n.º 27
0
def normalize(vectorOrCounter):
    """
    Normalize a vector or counter by dividing each value by the sum of all values.
    """

    normalizedCounter = counter.Counter()
    if type(vectorOrCounter) == type(normalizedCounter):
        counterContainer = vectorOrCounter
        total = float(counterContainer.totalCount())
        if total == 0:
            return counterContainer

        for key in list(counter.keys()):
            value = counter[key]
            normalizedCounter[key] = value / total

        return normalizedCounter
    else:
        vector = vectorOrCounter
        s = float(sum(vector))
        if s == 0:
            return vector

        return [el / s for el in vector]
Ejemplo n.º 28
0
 def getDistribution(self, state):
     dist = counter.Counter()
     for a in state.getLegalActions(self.index):
         dist[a] = 1.0
     dist.normalize()
     return dist
    def evaluationFunction(self, agent, gameState, action):
        weights = counter.Counter(self.getWeights(gameState))
        features = self.getFeatures(agent, gameState, action)

        return weights * features
    def getFeatures(self, agent, gameState, action):
        features = counter.Counter()

        if self.offense:
            # successor = self.getSuccessor(agent, gameState, action)
            successor = gameState
            features['successorScore'] = self.getScore(successor)

            food = self.getFood(successor)
            foodList = food.asList()

            if (len(foodList) > 0):
                myPos = successor.getAgentState(self.index).getPosition()
                minDistance = min(
                    [self.getMazeDistance(myPos, food) for food in foodList])
                features['distanceToFood'] = minDistance

            opponents = self.getOpponents(gameState)
            agentState = gameState.getAgentState(self.index)
            myPos = agentState.getPosition()
            closeGhosts = 0
            for opponent in opponents:
                opponentPos = gameState.getAgentState(opponent).getPosition()
                if self.getMazeDistance(myPos, opponentPos) < 2:
                    closeGhosts += 1
            features['closeGhosts'] = closeGhosts

            foodAtMyPos = food[int(myPos[0])][int(myPos[1])]
            if not closeGhosts and foodAtMyPos:
                features['eatFood'] = 1.0

            # ATTACK FEATURE
            capsules = self.getCapsules(gameState)
            powerPills = [
                self.getMazeDistance(myPos, pill) for pill in capsules
            ]
            if len(powerPills) > 0:
                eatPill = min(powerPills)
            else:
                eatPill = 0

            if closeGhosts > 0:
                features['eatPill'] = eatPill
                features['eatFood'] = 0
            else:
                features['eatPill'] = 0

            return features
        '''
        Defense features
        '''
        # successor = self.getSuccessor(agent, gameState, action)
        successor = gameState

        myState = successor.getAgentState(self.index)
        myPos = myState.getPosition()

        features['onDefense'] = 1
        if (myState.isPacman()):
            features['onDefense'] = 0

        enemies = [
            successor.getAgentState(i) for i in self.getOpponents(successor)
        ]
        invaders = [
            a for a in enemies if a.isPacman() and a.getPosition() is not None
        ]
        features['numInvaders'] = len(invaders)

        if (len(invaders) > 0):
            dists = [
                self.getMazeDistance(myPos, a.getPosition()) for a in invaders
            ]
            features['invaderDistance'] = min(dists)

        if (action == Directions.STOP):
            features['stop'] = 1

        rev = Directions.REVERSE[gameState.getAgentState(
            self.index).getDirection()]
        if (action == rev):
            features['reverse'] = 1

        return features