Ejemplo n.º 1
0
    def execute(self, grades, moduleDict, solutionDict):
        grades.addMessage('Testing Deep Q Network...')

        # Load Pacman Agent
        nographics = False
        pacmanType = loadAgent("PacmanDeepQAgent", nographics)
        pacman = pacmanType(self.layout)

        # Load Ghost Agent
        ghostType = loadAgent("RandomGhost", nographics)
        numghosts = 1
        ghosts = [ghostType(i + 1) for i in range(numghosts)]

        numTraining = pacman.model.numTrainingGames  # Set by student
        numGames = numTraining + self.numEvalGames
        record = False

        games = runGames(self.layout,
                         self.horizon,
                         pacman,
                         ghosts,
                         self.display,
                         numGames,
                         record,
                         numTraining=numTraining,
                         catchExceptions=False,
                         timeout=30)

        scores = [game.state.getScore() for game in games]
        wins = [game.state.isWin() for game in games]
        winRate = wins.count(True) / float(len(wins))

        if winRate < self.winThresh:
            grades.addMessage(
                'FAIL:\nWinRate = {} < {} threshold for full credit'.format(
                    winRate, self.winThresh))
            return False
        elif winRate < self.winThreshEC:
            grades.addMessage(
                'PASS:\nWinRate = {} >= {} threshold for full credit'.format(
                    winRate, self.winThresh))
            grades.assignFullCredit()
            return True
        else:
            grades.addMessage(
                'PASS:\nWinRate = {} >= {} threshold for extra credit'.format(
                    winRate, self.winThreshEC))
            grades.assignFullCredit()
            grades.addPoints(1)
            return True
Ejemplo n.º 2
0
def eval_genomes_single(genomes, config):
    for id, genome in genomes:
        genome.fitness = 0
        nn_model = neat.nn.FeedForwardNetwork.create(genome, config)
        pacmanType = pacman.loadAgent("NEATAgent", True)
        cmd_line_args['pacman'] = pacmanType(nn_model=nn_model)
        cmd_line_args['display'] = textDisplay.NullGraphics()
        #cmd_line_args['display'] = graphicsDisplay.PacmanGraphics()
        games = pacman.runGames(**cmd_line_args)
        for game in games:
            genome.fitness += game.state.getScore()
Ejemplo n.º 3
0
def eval_genomes(genome, config):
    genome.fitness = 0
    nn_model = neat.nn.FeedForwardNetwork.create(genome, config)
    pacmanType = pacman.loadAgent("NEATAgent", True)
    cmd_line_args['pacman'] = pacmanType(nn_model=nn_model)
    cmd_line_args['display'] = textDisplay.NullGraphics()
    # cmd_line_args['display'] = graphicsDisplay.PacmanGraphics()
    games = pacman.runGames(**cmd_line_args)
    result = 0
    for game in games:
        result += game.state.getScore()
    return float(result) / float(len(games))
Ejemplo n.º 4
0
def load_setup(options):
    """ Load the setup for training the agent
    """
    layout_ = layout.getLayout(options.layout)
    if layout is None:
        raise Exception("The layout " + options.layout + " cannot be found")

    # Initialize a Pacman agent
    pacmanType = loadAgent(options.pacman, nographics=False)
    pacmanOpts = parseAgentArgs(options.agentArgs)
    pacman = pacmanType(
        **pacmanOpts
    )  # Instantiate Pacman with depth=2 # To Do: allow depth as an argument

    # Initialize Ghost agents
    ghostType = loadAgent(options.ghost, nographics=False)
    ghostOpts = parseAgentArgs(options.ghostArgs)
    ghosts = [
        ghostType(index=i + 1, numTraining=options.numTraining, **ghostOpts)
        for i in range(options.numGhosts)
    ]

    return layout_, pacman, ghosts
Ejemplo n.º 5
0
def evaluate_candidates(candidates, args):
    nn_model = args["nn_model"]
    cmd_line_args = args["cmd_line_args"]
    candidates_fitness = []
    for candidate in candidates:
        nn_model.set_weights(candidate)
        pacmanType = pacman.loadAgent("BioAgent", True)
        cmd_line_args['pacman'] = pacmanType(nn_model=nn_model)
        cmd_line_args['display'] = textDisplay.NullGraphics()
        #cmd_line_args['display'] = graphicsDisplay.PacmanGraphics()
        games = pacman.runGames(**cmd_line_args)
        candidate_fitness = 0
        for game in games:
            candidate_fitness += game.state.getScore()
        candidates_fitness.append(candidate_fitness)
    print(candidates_fitness)
    return candidates_fitness
Ejemplo n.º 6
0
def load_ghosts(options, filename):
    """ Load the ghosts from file
    :param options: options from commandline
    :param filename: pkl file that stores the agent
    :return: ghosts set from pkl file
    """
    # Initialize ghosts given type
    ghostType = loadAgent(options.ghost, nographics=False)
    ghostOpts = parseAgentArgs(options.ghostArgs)
    ghosts = [
        ghostType(index=i + 1, numTraining=options.numTraining, **ghostOpts)
        for i in range(options.numGhosts)
    ]
    # Load ghosts from file and turn off training
    for ghost in ghosts:
        ghost.turnoff_training()
        ghost.load_from_file(filename)
    return ghosts
Ejemplo n.º 7
0
    # Add a stdout reporter to show progress in the terminal.
    p.add_reporter(neat.StdOutReporter(True))
    stats = neat.StatisticsReporter()
    p.add_reporter(stats)
    p.add_reporter(neat.Checkpointer(5))

    # Run for up to 300 generations (parallel)
    pe = neat.ParallelEvaluator(4, eval_genomes)
    winner = p.run(pe.evaluate, 1000)
    #winner = p.run(eval_genomes_single, 100)

    # Display the winning genome.
    print('\nBest genome:\n{!s}'.format(winner))

    # Save the winner to disk
    with open('winner-feedforward.out', 'wb') as f:
        pickle.dump(winner, f)

    # Show output of the most fit genome against training data.
    print('\nOutput:')
    winner_net = neat.nn.FeedForwardNetwork.create(winner, config)

    # Load the final agent and run a few games with it
    pacmanType = pacman.loadAgent("NEATAgent", True)
    cmd_line_args['pacman'] = pacmanType(nn_model=winner_net)
    cmd_line_args['display'] = textDisplay.NullGraphics()
    #cmd_line_args['display'] = graphicsDisplay.PacmanGraphics()
    cmd_line_args['numGames'] = 10
    games = pacman.runGames(**cmd_line_args)
    pass
Ejemplo n.º 8
0
def readCommand(argv):
    """
    Processes the command used to run pacman from the command line.
    """
    from optparse import OptionParser
    usageStr = """
    USAGE:      python pacman.py <options>
    EXAMPLES:   (1) python pacman.py
                    - starts an interactive game
                (2) python pacman.py --layout smallClassic --zoom 2
                OR  python pacman.py -l smallClassic -z 2
                    - starts an interactive game on a smaller board, zoomed in
    """
    parser = OptionParser(usageStr)

    parser.add_option('-n',
                      '--numGames',
                      dest='numGames',
                      type='int',
                      default=10,
                      help=default('the number of GAMES to play'),
                      metavar='GAMES')
    parser.add_option('--numDisplay',
                      dest='numDisplay',
                      type='int',
                      default=10,
                      help=default('the number of GAMES to display'))
    parser.add_option(
        '-l',
        '--layout',
        dest='layout',
        default='small',
        help=default(
            'the index of LAYOUT_FILE from which to load the map layout'))
    parser.add_option(
        '-p',
        '--pacman',
        dest='pacman',
        default='MC',
        help=default('the agent in the pacmanAgents module to use'))
    parser.add_option('-a',
                      '--all',
                      dest='testAll',
                      action='store_true',
                      default=False,
                      help=default('if we want to test all the parameters'))
    parser.add_option(
        '-s',
        '--showPlot',
        dest='showPlot',
        action='store_true',
        default=False,
        help=default('If we want to show the plot of the result'))
    parser.add_option('--norun',
                      dest='noRun',
                      action='store_true',
                      default=False,
                      help=default('If run the game'))

    parser.add_option('--savegif',
                      dest='savegif',
                      action='store_true',
                      default=False,
                      help=default('If save the gif files'))

    options, otherjunk = parser.parse_args(argv)

    if len(otherjunk) != 0:
        raise Exception('Command line input not understood: ' + str(otherjunk))

    args = dict()

    ghostType = loadAgent('RandomGhost', False)
    args['ghosts'] = [ghostType(i + 1) for i in range(10)]
    args['numGames'] = options.numGames
    args['numGamesToDisplay'] = options.numDisplay
    argsList = []
    if options.testAll:
        for layout in layouts:
            for pacman in pacmans.values():
                argsTmp = copy.deepcopy(args)
                argsTmp['layoutName'] = layout
                argsTmp['pacman'] = pacman
                argsList.append(argsTmp)
    else:
        args['layoutName'] = options.layout
        args['pacman'] = pacmans[options.pacman]
        argsList.append(args)

    return (argsList, options)
Ejemplo n.º 9
0

if __name__ == '__main__':
    cmd_line_args = pacman.readCommand(
        sys.argv[1:])  # Get game components based on input
    nn_model = generate_model()
    prng = Random()
    prng.seed(time())
    ea = ec.DEA(prng)
    ea.terminator = ec.terminators.evaluation_termination
    final_pop = ea.evolve(generator=generate_candidate,
                          evaluator=evaluate_candidates,
                          pop_size=1000,
                          maximize=True,
                          max_evaluations=1000,
                          mutation_rate=0.3,
                          crossover_rate=1,
                          nn_model=nn_model,
                          num_elites=1,
                          mp_num_cpus=4,
                          cmd_line_args=cmd_line_args)
    best = max(final_pop)
    nn_model.set_weights(best.candidate)
    print("Final candidate:", best.candidate)
    pacmanType = pacman.loadAgent("BioAgent", True)
    cmd_line_args['pacman'] = pacmanType(nn_model=nn_model)
    cmd_line_args['display'] = graphicsDisplay.PacmanGraphics()
    cmd_line_args['numGames'] = 10
    games = pacman.runGames(**cmd_line_args)
    pass
Ejemplo n.º 10
0
def read_command(argv):
    from optparse import OptionParser
    usage_str = """
    USAGE:      python experiment.py <options>
    EXAMPLES:   (1) python experiment.py --layout testRL --pacman=AlphaBetaAgent --ghosts=QLearningGhost --numTraining=10 
    """
    parser = OptionParser(usage_str)
    parser.add_option(
        '-l',
        '--layout',
        dest='layout',
        help=default('the LAYOUT_FILE from which to load the map layout'),
        metavar='LAYOUT_FILE',
        default='mediumClassic')
    parser.add_option(
        '-p',
        '--pacman',
        dest='pacman',
        help=default('the agent TYPE in the pacmanAgents module to use'),
        metavar='TYPE',
        default='KeyboardAgent')
    parser.add_option(
        '-a',
        '--agentArgs',
        dest='agentArgs',
        help=
        'Comma separated values sent to agent. e.g. "opt1=val1,opt2,opt3=val3"'
    )
    parser.add_option(
        '-g',
        '--ghosts',
        dest='ghost',
        help=default('the ghost agent TYPE in the ghostAgents module to use'),
        metavar='TYPE',
        default='QLearningGhost')
    parser.add_option(
        '-x',
        '--numTraining',
        dest='numTraining',
        type='int',
        help=default('How many episodes are training (suppresses output)'),
        default=10)
    parser.add_option('-k',
                      '--numghosts',
                      type='int',
                      dest='numGhosts',
                      help=default('The maximum number of ghosts to use'),
                      default=4)
    parser.add_option(
        '-f',
        '--fixRandomSeed',
        action='store_true',
        dest='fixRandomSeed',
        help='Fixes the random seed to always play the same game',
        default=False)
    parser.add_option(
        '--ghostArgs',
        dest='ghostArgs',
        help=
        'Comma separated values sent to ghost. e.g. "opt1=val1,opt2,opt3=val3"'
    )

    options, otherjunk = parser.parse_args(argv)
    if len(otherjunk) != 0:
        raise Exception('Command line input not understood: ' + str(otherjunk))

    args = dict()

    # Fix the random seed
    if options.fixRandomSeed: random.seed('cs188')

    # Choose a layout
    args['layout'] = layout.getLayout(options.layout)
    if args['layout'] is None:
        raise Exception("The layout " + options.layout + " cannot be found")

    # Initialize a Pacman agent
    pacmanType = loadAgent(options.pacman, nographics=False)
    pacmanOpts = parseAgentArgs(options.agentArgs)
    pacman = pacmanType(
        **pacmanOpts
    )  # Instantiate Pacman with depth=2 # To Do: allow depth as an argument
    args['pacman'] = pacman

    # Initialize Ghost agents
    ghostType = loadAgent(options.ghost, nographics=False)
    ghostOpts = parseAgentArgs(options.ghostArgs)
    args['ghosts'] = [
        ghostType(index=i + 1, numTraining=options.numTraining, **ghostOpts)
        for i in range(options.numGhosts)
    ]

    # Set number of training episodes for experiment
    args['numTraining'] = options.numTraining

    return args, options