Ejemplo n.º 1
0
def simple_rnn(rnn_input,
               init_hidden,
               hidden_size,
               kernel_param_attr=None,
               recurrent_param_attr=None,
               bias_attr=None,
               act='relu',
               sequence_length=None,
               name='simple_rnn'):

    # Transpose (sequence x batch x hidden)
    rnn_input = layers.transpose(rnn_input, [1, 0, 2])

    # Generate Mask
    mask = None
    if sequence_length:
        max_seq_len = layers.shape(rnn_input)[0]
        mask = layers.sequence_mask(sequence_length,
                                    maxlen=max_seq_len,
                                    dtype='float32')
        mask = layers.transpose(mask, [1, 0])

    # Init
    simple_rnn = SimpleRNN_unit(rnn_input, hidden_size, kernel_param_attr,
                                recurrent_param_attr, bias_attr, act)

    rnn = PaddingRNN()
    with rnn.step():
        step_in = rnn.step_input(rnn_input)

        if mask:
            step_mask = rnn.step_input(mask)

        if init_hidden:
            pre_hidden = rnn.memory(init=init_hidden)
        else:
            pre_hidden = rnn.memory(batch_ref=rnn_input,
                                    shape=[-1, hidden_size])

        last_hidden = simple_rnn(step_in, pre_hidden)

        rnn.update_memory(pre_hidden, last_hidden)

        rnn.step_output(last_hidden)

        step_input = last_hidden

    rnn_out = rnn()

    last_hidden = rnn_out[-1]
    last_hidden = layers.reshape(last_hidden, shape=[1, -1, hidden_size])

    rnn_output = layers.transpose(rnn_out, [1, 0, 2])
    last_hidden = layers.transpose(last_hidden, [1, 0, 2])

    return rnn_out, last_hidden
def rnn_decoder(gru_unit,
                cue_gru_unit,
                input,
                input_size,
                hidden_size,
                num_layers,
                memory,
                memory_mask,
                knowledge,
                output_size,
                init_hidden=None,
                mask=None,
                dropout=0.0,
                batch_first=True,
                name="decoder"):
    """ rnn decoder """
    input_emb = get_embedding(input, input_size, output_size)
    if batch_first:
        input_emb = layers.transpose(input_emb, perm=[1, 0, 2])
        if mask:
            trans_mask = layers.transpose(mask, perm=[1, 0])

    rnn = PaddingRNN()
    with rnn.step():
        step_in = rnn.step_input(input_emb)
        step_mask = None

        if mask:
            step_mask = rnn.step_input(trans_mask)

        # split pre_hidden
        pre_hidden_list = []

        pre_hidden = rnn.memory(init=init_hidden)
        real_out, last_hidden = \
            decoder_step(gru_unit, cue_gru_unit, step_in, pre_hidden, input_size,
                         hidden_size, memory, memory_mask, knowledge, mask=step_mask)

        rnn.update_memory(pre_hidden, last_hidden)

        step_in = layers.squeeze(real_out, axes=[1])
        rnn.step_output(step_in)

    rnnout = rnn()
    rnnout = layers.transpose(rnnout, perm=[1, 0, 2])
    rnnout = layers.elementwise_mul(rnnout, mask, axis=0)

    output_in_size = hidden_size + hidden_size
    rnnout = layers.dropout(rnnout, dropout_prob=dropout)
    rnnout = fc(rnnout, output_in_size, hidden_size, name='dec_out_fc1')
    rnnout = fc(rnnout, hidden_size, output_size, name='dec_out_fc2')

    softmax_out = layers.softmax(rnnout)

    return softmax_out
def gru_rnn(input,
            input_size,
            hidden_size,
            init_hidden=None,
            batch_first=False,
            mask=None,
            num_layers=1,
            dropout=0.0,
            name="gru"):
    """ gru rnn """

    gru_unit = GRU_unit(input_size,
                        hidden_size,
                        num_layers=num_layers,
                        dropout=dropout,
                        name=name + "_gru_unit")

    if batch_first:
        input = layers.transpose(x=input, perm=[1, 0, 2])
        if mask:
            mask = layers.transpose(mask, perm=[1, 0])

    rnn = PaddingRNN()
    with rnn.step():
        step_in = rnn.step_input(input)
        step_mask = None

        if mask:
            step_mask = rnn.step_input(mask)

        pre_hidden = rnn.memory(init=init_hidden)
        new_hidden, last_hidden = gru_unit(step_in, pre_hidden, step_mask)
        rnn.update_memory(pre_hidden, last_hidden)
        step_in = new_hidden
        rnn.step_output(step_in)
        rnn.step_output(last_hidden)

    rnn_res = rnn()
    rnn_out = rnn_res[0]
    last_hidden = layers.slice(rnn_res[1],
                               axes=[0],
                               starts=[-1],
                               ends=[1000000000])
    last_hidden = layers.reshape(last_hidden,
                                 shape=[num_layers, -1, hidden_size])

    if batch_first:
        rnnout = layers.transpose(x=rnn_out, perm=[1, 0, 2])

    return rnnout, last_hidden
Ejemplo n.º 4
0
    def padding_rnn(input_embedding, len=3, init_hidden=None, init_cell=None):
        weight_1_arr = []
        weight_2_arr = []
        bias_arr = []
        hidden_array = []
        cell_array = []
        mask_array = []
        for i in range(num_layers):
            weight_1 = layers.create_parameter(
                [hidden_size * 2, hidden_size * 4],
                dtype="float32",
                name="fc_weight1_" + str(i),
                default_initializer=fluid.initializer.UniformInitializer(
                    low=-init_scale, high=init_scale))
            weight_1_arr.append(weight_1)
            bias_1 = layers.create_parameter(
                [hidden_size * 4],
                dtype="float32",
                name="fc_bias1_" + str(i),
                default_initializer=fluid.initializer.Constant(0.0))
            bias_arr.append(bias_1)

            pre_hidden = layers.slice(
                init_hidden, axes=[0], starts=[i], ends=[i + 1])
            pre_cell = layers.slice(
                init_cell, axes=[0], starts=[i], ends=[i + 1])
            pre_hidden = layers.reshape(pre_hidden, shape=[-1, hidden_size])
            pre_cell = layers.reshape(pre_cell, shape=[-1, hidden_size])
            hidden_array.append(pre_hidden)
            cell_array.append(pre_cell)

        input_embedding = layers.transpose(input_embedding, perm=[1, 0, 2])
        rnn = PaddingRNN()

        with rnn.step():
            input = rnn.step_input(input_embedding)
            for k in range(num_layers):
                pre_hidden = rnn.memory(init=hidden_array[k])
                pre_cell = rnn.memory(init=cell_array[k])
                weight_1 = weight_1_arr[k]
                bias = bias_arr[k]

                nn = layers.concat([input, pre_hidden], 1)
                gate_input = layers.matmul(x=nn, y=weight_1)

                gate_input = layers.elementwise_add(gate_input, bias)
                i = layers.slice(
                    gate_input, axes=[1], starts=[0], ends=[hidden_size])
                j = layers.slice(
                    gate_input,
                    axes=[1],
                    starts=[hidden_size],
                    ends=[hidden_size * 2])
                f = layers.slice(
                    gate_input,
                    axes=[1],
                    starts=[hidden_size * 2],
                    ends=[hidden_size * 3])
                o = layers.slice(
                    gate_input,
                    axes=[1],
                    starts=[hidden_size * 3],
                    ends=[hidden_size * 4])

                c = pre_cell * layers.sigmoid(f) + layers.sigmoid(
                    i) * layers.tanh(j)
                m = layers.tanh(c) * layers.sigmoid(o)

                rnn.update_memory(pre_hidden, m)
                rnn.update_memory(pre_cell, c)

                rnn.step_output(m)
                rnn.step_output(c)

                input = m

                if dropout != None and dropout > 0.0:
                    input = layers.dropout(
                        input,
                        dropout_prob=dropout,
                        dropout_implementation='upscale_in_train')

            rnn.step_output(input)
        rnnout = rnn()

        last_hidden_array = []
        last_cell_array = []
        real_res = rnnout[-1]
        for i in range(num_layers):
            m = rnnout[i * 2]
            c = rnnout[i * 2 + 1]
            m.stop_gradient = True
            c.stop_gradient = True
            last_h = layers.slice(
                m, axes=[0], starts=[num_steps - 1], ends=[num_steps])
            last_hidden_array.append(last_h)
            last_c = layers.slice(
                c, axes=[0], starts=[num_steps - 1], ends=[num_steps])
            last_cell_array.append(last_c)
        real_res = layers.transpose(x=real_res, perm=[1, 0, 2])
        last_hidden = layers.concat(last_hidden_array, 0)
        last_cell = layers.concat(last_cell_array, 0)

        return real_res, last_hidden, last_cell
Ejemplo n.º 5
0
def convlstm2d_rnn(rnn_input,
                   init_hidden,
                   init_cell,
                   padding,
                   hidden_h,
                   hidden_w,
                   filters,
                   filter_size,
                   drop_out=None,
                   sequence_length=None,
                   name='conv_lstm_2d'):

    # transpose : (sequence x batch x C x H x W)
    rnn_input = layers.transpose(rnn_input, [1, 0, 4, 2, 3])

    # generate mask
    mask = None
    if sequence_length:
        max_seq_len = layers.shape(rnn_input)[0]
        mask = layers.sequence_mask(sequence_length,
                                    maxlen=max_seq_len,
                                    dtype='float32')
        mask = layers.transpose(mask, [1, 0])

    # init
    conv_lstm_2d = ConvLSTM2D_unit(filters, filter_size, padding)

    rnn = PaddingRNN()
    with rnn.step():
        step_in = rnn.step_input(rnn_input)

        if mask:
            step_mask = rnn.step_input(mask)

        if init_hidden and init_cell:
            pre_hidden = rnn.memory(init=init_hidden)
            pre_cell = rnn.memory(init=init_cell)
        else:
            pre_hidden = rnn.memory(batch_ref=rnn_input,
                                    shape=[-1, filters, hidden_h, hidden_w])
            pre_cell = rnn.memory(batch_ref=rnn_input,
                                  shape=[-1, filters, hidden_h, hidden_w])

        real_out, last_hidden, last_cell = conv_lstm_2d(
            step_in, pre_hidden, pre_cell)

        if mask:
            last_hidden = dot(last_hidden, step_mask, axis=0) - dot(
                pre_hidden, (step_mask - 1), axis=0)
            last_cell = dot(last_cell, step_mask, axis=0) - dot(
                pre_cell, (step_mask - 1), axis=0)

        rnn.update_memory(pre_hidden, last_hidden)
        rnn.update_memory(pre_cell, last_cell)

        rnn.step_output(last_hidden)
        rnn.step_output(last_cell)

        step_input = last_hidden

        if drop_out != None and drop_out > 0.0:
            step_input = layers.dropout(
                step_input,
                dropout_prob=drop_out,
                dropout_implementation='upscale_in_train')

    rnn_res = rnn()
    rnn_out = rnn_res[0]
    last_hidden = layers.slice(rnn_res[1],
                               axes=[0],
                               starts=[-1],
                               ends=[1000000000])

    rnn_out = layers.transpose(rnn_out, [1, 0, 3, 4, 2])
    last_hidden = layers.transpose(last_hidden, [1, 0, 3, 4, 2])

    # print('rnn_out ', rnn_out.shape)
    # print('last_hidden ', last_hidden.shape)

    return rnn_out, last_hidden