Ejemplo n.º 1
0
        def exist_objs_3(keep, masks, classes, scores, upsampled_size_out,
                         resize_shape, ori_shape):
            keep = L.reshape(keep, (-1, ))
            keep.stop_gradient = True
            masks = L.gather(masks, keep)  # [M4, s4, s4]   M4个物体的掩码概率
            scores = L.gather(scores, keep)  # [M4, ]   M4个物体的分数
            classes = L.gather(classes, keep)  # [M4, ]   M4个物体的类别id

            # 第五次过滤,只保留得分前cfg['max_per_img']个物体
            _, sort_inds = L.argsort(scores, axis=-1, descending=True)
            sort_inds = sort_inds[:cfg['max_per_img']]
            sort_inds.stop_gradient = True

            masks = L.gather(masks, sort_inds)  # [M5, s4, s4]   M5个物体的掩码概率
            scores = L.gather(scores, sort_inds)  # [M5, ]   M5个物体的分数
            classes = L.gather(classes, sort_inds)  # [M5, ]   M5个物体的类别id

            masks = L.resize_bilinear(
                L.unsqueeze(masks, axes=[0]),
                out_shape=upsampled_size_out,
                align_corners=False,
                align_mode=0)[:, :, :resize_shape[0], :resize_shape[1]]  # 去掉黑边
            masks = L.resize_bilinear(masks,
                                      out_shape=ori_shape[:2],
                                      align_corners=False,
                                      align_mode=0)  # 插值成原图大小
            masks = L.cast(masks > cfg['mask_thr'], 'float32')[0]
            return masks, classes, scores
Ejemplo n.º 2
0
 def test_resize_bilinear(self):
     program = Program()
     with program_guard(program):
         x = layers.data(name='x', shape=[3, 9, 6], dtype="float32")
         output = layers.resize_bilinear(x, out_shape=[12, 12])
         self.assertIsNotNone(output)
         output = layers.resize_bilinear(x, scale=3)
         self.assertIsNotNone(output)
     print(str(program))
Ejemplo n.º 3
0
    def get_prediction(self, feats, eval=True):
        name_list = list(feats.keys())
        feats2 = [feats[name] for name in name_list]  # [p2, p3, p4, p5]
        feats = feats2
        # 有5个张量,5个张量的strides=[8, 8, 16, 32, 32],所以先对首尾张量进行插值。
        # 一定要设置align_corners=False, align_mode=0才能和原版SOLO输出一致。
        new_feats = [
            L.resize_bilinear(feats[0],
                              out_shape=L.shape(feats[1])[2:],
                              align_corners=False,
                              align_mode=0), feats[1], feats[2], feats[3],
            L.resize_bilinear(feats[4],
                              out_shape=L.shape(feats[3])[2:],
                              align_corners=False,
                              align_mode=0)
        ]

        kernel_preds, cls_preds = [], []
        for idx in range(len(self.seg_num_grids)):
            krn_feat = new_feats[idx]  # 给卷积核分支

            # ============ kernel branch (卷积核分支) ============
            ins_kernel_feat = concat_coord(krn_feat)  # 带上坐标信息。[N, c+2, h, w]
            kernel_feat = ins_kernel_feat  # ins_kernel_feat不再使用
            seg_num_grid = self.seg_num_grids[idx]  # 这个特征图一行(列)的格子数
            # kernel_feat插值成格子图。 [N, c+2, seg_num_grid, seg_num_grid]
            kernel_feat = L.resize_bilinear(
                kernel_feat,
                out_shape=[seg_num_grid, seg_num_grid],
                align_corners=False,
                align_mode=0)

            # 扔掉插入的坐标那2个通道,作为cls_feat。 [N, c, seg_num_grid, seg_num_grid]
            cls_feat = kernel_feat[:, :-2, :, :]

            for kernel_layer in self.krn_convs:
                kernel_feat = kernel_layer(kernel_feat)
            for class_layer in self.cls_convs:
                cls_feat = class_layer(cls_feat)
            kernel_pred = kernel_feat  # [N, 256, seg_num_grid, seg_num_grid]   每个格子的预测卷积核
            cls_pred = cls_feat  # [N,  80, seg_num_grid, seg_num_grid]   每个格子的预测概率,未进行sigmoid()激活

            if eval:
                # [N, seg_num_grid, seg_num_grid, 80]   每个格子的预测概率,已进行sigmoid()激活
                cls_pred = L.transpose(points_nms(L.sigmoid(cls_pred),
                                                  kernel=2),
                                       perm=[0, 2, 3, 1])

            kernel_preds.append(kernel_pred)
            cls_preds.append(cls_pred)
        return [kernel_preds, cls_preds]
Ejemplo n.º 4
0
def proto_net(x):
    x = P.conv2d(x, 256, filter_size=(3, 3), stride=1, padding=1,
                 param_attr=ParamAttr(initializer=fluid.initializer.Normal(0.0, 0.01), name="proto_net.0.weight"),
                 bias_attr=ParamAttr(initializer=fluid.initializer.Constant(0.0), name="proto_net.0.bias"))
    x = P.relu(x)

    x = P.conv2d(x, 256, filter_size=(3, 3), stride=1, padding=1,
                 param_attr=ParamAttr(initializer=fluid.initializer.Normal(0.0, 0.01), name="proto_net.2.weight"),
                 bias_attr=ParamAttr(initializer=fluid.initializer.Constant(0.0), name="proto_net.2.bias"))
    x = P.relu(x)

    x = P.conv2d(x, 256, filter_size=(3, 3), stride=1, padding=1,
                 param_attr=ParamAttr(initializer=fluid.initializer.Normal(0.0, 0.01), name="proto_net.4.weight"),
                 bias_attr=ParamAttr(initializer=fluid.initializer.Constant(0.0), name="proto_net.4.bias"))
    x = P.relu(x)

    x = P.resize_bilinear(x, scale=float(2))
    x = P.relu(x)

    x = P.conv2d(x, 256, filter_size=(3, 3), stride=1, padding=1,
                 param_attr=ParamAttr(initializer=fluid.initializer.Normal(0.0, 0.01), name="proto_net.8.weight"),
                 bias_attr=ParamAttr(initializer=fluid.initializer.Constant(0.0), name="proto_net.8.bias"))
    x = P.relu(x)

    x = P.conv2d(x, 32, filter_size=(1, 1), stride=1,
                 param_attr=ParamAttr(initializer=fluid.initializer.Normal(0.0, 0.01), name="proto_net.10.weight"),
                 bias_attr=ParamAttr(initializer=fluid.initializer.Constant(0.0), name="proto_net.10.bias"))
    return x
Ejemplo n.º 5
0
    def __call__(self, image):
        # Calculate new size. Ensure that it is even so that crop/pad becomes easier
        h_orig, w_orig = image.shape[2:]

        if h_orig != w_orig:
            raise NotImplementedError

        h_new = round(h_orig / self.scale_factor)
        h_new += (h_new - h_orig) % 2
        w_new = round(w_orig / self.scale_factor)
        w_new += (w_new - w_orig) % 2

        if isinstance(image, PTensor):
            image_resized = layers.resize_bilinear(image, [h_new, w_new],
                                                   align_corners=False)
        else:
            image_resized = cv.resize(image, (w_new, h_new),
                                      interpolation=cv.INTER_LINEAR)
        return self.crop_to_output(image_resized)