Ejemplo n.º 1
0
    def test_truncated_normal_initializer_default_value(self):
        """Test the truncated normal initializer with default value
        """
        paddle.enable_static()

        program = framework.Program()
        block = program.global_block()
        for _ in range(2):
            block.create_parameter(dtype="float32",
                                   shape=[5, 10],
                                   lod_level=0,
                                   name="param",
                                   initializer=initializer.TruncatedNormal())
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'truncated_gaussian_random')
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), 1.0, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

        paddle.disable_static()
Ejemplo n.º 2
0
    def test_truncated_normal_initializer(self, dtype="float32"):
        """Test truncated normal initializer with supplied attributes
        """
        paddle.enable_static()

        program = framework.Program()
        block = program.global_block()
        for _ in range(2):
            block.create_parameter(dtype=dtype,
                                   shape=[5, 10],
                                   lod_level=0,
                                   name="param",
                                   initializer=initializer.TruncatedNormal(
                                       2.3, 1.9))
        num_ops = 2 if dtype in ["float16", "uint16"] else 1
        self.assertEqual(len(block.ops), num_ops)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'truncated_gaussian_random')
        self.assertAlmostEqual(init_op.attr('mean'), 2.3, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), 1.9, delta=DELTA)

        paddle.disable_static()

        return block
Ejemplo n.º 3
0
    shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
    random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
    random_tensor = paddle.floor(random_tensor)  # binarize
    output = x.divide(keep_prob) * random_tensor
    return output


class DropPath(nn.Layer):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


class Identity(nn.Layer):
    def __init__(self):
        super(Identity, self).__init__()

    def forward(self, input):
        return input


trunc_normal_ = paddle_init.TruncatedNormal(std=.02)
zeros_ = paddle_init.Constant(value=0.)
ones_ = paddle_init.Constant(value=1.)