Ejemplo n.º 1
0
def train():
    """bergin train"""
    arr1 = []
    arr2 = []
    dist.init_parallel_env()
    set_seed(2021)
    layer = LinearNet()

    if dist.get_world_size() > 1:
        dp_layer = paddle.DataParallel(layer)
    else:
        dp_layer = layer

    layer2 = LinearNet()

    if dist.get_world_size() > 1:
        dp_layer2 = paddle.DataParallel(layer2)
    else:
        dp_layer2 = layer2

    dp_layer2.set_state_dict(dp_layer.state_dict())

    loss_fn = nn.MSELoss()
    adam = opt.Adam(
        learning_rate=0.001, parameters=dp_layer.parameters())

    adam2 = opt.Adam(
        learning_rate=0.001, parameters=dp_layer2.parameters())

    for i in range(2):
        batch_size = 10
        shard = int(batch_size / dist.get_world_size())
        start_no = shard * dist.get_rank()
        end_no = start_no + shard
        inputs = paddle.randn([10, 10], 'float32')[start_no:end_no]
        outputs = dp_layer(inputs)
        labels = paddle.randn([10, 1], 'float32')[start_no:end_no]
        loss = loss_fn(outputs, labels)
        if dist.get_rank() == 0:
            arr1.append(loss.numpy()[0])
        loss.backward()
        adam.step()
        adam.clear_grad()

        outputs = dp_layer2(inputs)
        loss = loss_fn(outputs, labels)
        loss.backward()
        if dist.get_rank() == 0:
            arr2.append(loss.numpy()[0])
        adam2.step()
        adam2.clear_grad()
    check_data(arr1, arr2)
Ejemplo n.º 2
0
def train():
    dist.init_parallel_env()
    # 1. initialize parallel environment
    set_seed(2021)
    # 2. create data parallel layer & optimizer
    layer = LinearNet()

    if dist.get_world_size() > 1:
        dp_layer = paddle.DataParallel(layer)
    else:
        dp_layer = layer

    layer2 = LinearNet()

    if dist.get_world_size() > 1:
        dp_layer2 = paddle.DataParallel(layer2)
    else:
        dp_layer2 = layer2

    dp_layer2.set_state_dict(dp_layer.state_dict())

    loss_fn = nn.MSELoss()
    adam = opt.Adam(learning_rate=0.001, parameters=dp_layer.parameters())

    adam2 = opt.Adam(learning_rate=0.001, parameters=dp_layer2.parameters())
    # 3. run layer

    print("Start")
    for i in range(10):
        batch_size = 10
        shard = int(batch_size / dist.get_world_size())
        start_no = shard * dist.get_rank()
        end_no = start_no + shard
        inputs = paddle.randn([10, 10], 'float32')[start_no:end_no]
        outputs = dp_layer(inputs)
        labels = paddle.randn([10, 1], 'float32')[start_no:end_no]
        loss = loss_fn(outputs, labels)
        if dist.get_rank() == 0:
            print("Loss1", loss.numpy()[0])
            print(dp_layer.parameters())
        loss.backward()
        adam.step()
        adam.clear_grad()

        outputs = dp_layer2(inputs)
        loss = loss_fn(outputs, labels)
        loss.backward()
        if dist.get_rank() == 0:
            print("Loss2", loss.numpy()[0])
            print(dp_layer2.parameters())
        adam2.step()
        adam2.clear_grad()
Ejemplo n.º 3
0
def train(print_result=False):
    # 1. enable dynamic mode
    paddle.disable_static()
    
    # 2. initialize parallel environment
    dist.init_parallel_env()

    # 3. create data parallel layer & optimizer
    layer = LinearNet()
    dp_layer = paddle.DataParallel(layer)

    loss_fn = nn.MSELoss()
    adam = opt.Adam(
        learning_rate=0.001, parameters=dp_layer.parameters())

    # 4. run layer
    inputs = paddle.randn([10, 10], 'float32')
    outputs = dp_layer(inputs)
    labels = paddle.randn([10, 1], 'float32')
    loss = loss_fn(outputs, labels)
    
    if print_result is True:
        print("loss:", loss.numpy())
    
    loss.backward()

    adam.step()
    adam.clear_grad()
Ejemplo n.º 4
0
def train(print_result=True):
    """train"""
    # 1. initialize parallel environment
    train_data_list1 = []
    train_data_list2 = []
    dist.init_parallel_env()

    # 2. create data parallel layer & optimizer
    layer = LinearNet()
    dp_layer = paddle.DataParallel(layer)

    loss_fn = nn.MSELoss()
    adam = opt.Adam(learning_rate=0.001, parameters=dp_layer.parameters())

    # 3. run layer
    inputs = paddle.randn([10, 10], 'float32')
    outputs = dp_layer(inputs)
    labels = paddle.randn([10, 1], 'float32')
    loss = loss_fn(outputs, labels)
    assert len(loss) == 1
    if print_result is True:
        train_data_list1.append(loss.numpy())
    assert len(train_data_list1)

    loss.backward()

    adam.step()
    adam.clear_grad()
def train():
    # enable dygraph mode
    paddle.disable_static()

    dist.init_parallel_env()

    # create network
    layer = LinearNet()
    dp_layer = paddle.DataParallel(layer)
    loss_fn = nn.CrossEntropyLoss()
    adam = opt.Adam(learning_rate=0.001, parameters=dp_layer.parameters())

    # print(core._get_device_properties(dist.ParallelEnv().device_id))

    # create data loader
    # loader = paddle.io.DataLoader.from_generator(capacity=5, use_multiprocess=True)
    loader = paddle.io.DataLoader.from_generator(capacity=5)
    loader.set_batch_generator(random_batch_reader())

    for epoch_id in range(EPOCH_NUM):
        for batch_id, (image, label) in enumerate(loader()):
            out = layer(image)
            loss = loss_fn(out, label)

            loss = dp_layer.scale_loss(loss)
            loss.backward()
            dp_layer.apply_collective_grads()

            adam.step()
            adam.clear_grad()
            print("Epoch {} batch {}: loss = {}".format(
                epoch_id, batch_id, np.mean(loss.numpy())))
Ejemplo n.º 6
0
def train():
    # 1. enable dynamic mode
    paddle.disable_static()

    # 2. initialize parallel environment
    dist.init_parallel_env()

    # 3. create data parallel layer & optimizer
    layer = LinearNet()
    dp_layer = paddle.DataParallel(layer)

    loss_fn = nn.MSELoss()
    adam = opt.Adam(learning_rate=0.001, parameters=dp_layer.parameters())

    # 4. run layer
    inputs = paddle.randn([10, 10], 'float32')
    outputs = dp_layer(inputs)
    labels = paddle.randn([10, 1], 'float32')
    loss = loss_fn(outputs, labels)

    loss = dp_layer.scale_loss(loss)
    loss.backward()
    dp_layer.apply_collective_grads()

    adam.step()
    adam.clear_grad()
Ejemplo n.º 7
0
def train(print_result=False):
    # 1. initialize parallel environment
    dist.init_parallel_env()

    # 2. create data parallel layer & optimizer
    layer = LinearNet()
    dp_layer = paddle.DataParallel(layer)

    loss_fn = nn.MSELoss()
    adam = opt.Adam(learning_rate=0.001, parameters=dp_layer.parameters())

    # 3. run layer
    inputs = paddle.randn([10, 10], 'float32')
    outputs = dp_layer(inputs)
    labels = paddle.randn([10, 1], 'float32')
    loss = loss_fn(outputs, labels)

    if print_result is True:
        print("Rank:", int(os.getenv("PADDLE_TRAINER_ID")))

    loss.backward()
    adam.step()
    adam.clear_grad()

    return int(os.getenv("PADDLE_TRAINER_ID"))
Ejemplo n.º 8
0
def train():
    # init env
    dist.init_parallel_env()

    # create network
    layer = LinearNet()
    dp_layer = paddle.DataParallel(layer)
    loss_fn = nn.CrossEntropyLoss()
    adam = opt.Adam(learning_rate=0.001, parameters=dp_layer.parameters())

    # create data loader
    dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
    loader = paddle.io.DataLoader(dataset,
        batch_size=BATCH_SIZE,
        shuffle=True,
        drop_last=True,
        num_workers=1)

    # train
    for epoch_id in range(EPOCH_NUM):
        for batch_id, (image, label) in enumerate(loader()):
            out = layer(image)
            loss = loss_fn(out, label)

            loss.backward()

            adam.step()
            adam.clear_grad()

            if dist.get_rank() == 0:
                print("Epoch {} batch {}: loss = {}".format(
                    epoch_id, batch_id, np.mean(loss.numpy())))
def get_paddle_model(model_path):
    def train(layer, loader, loss_fn, optimizer):
        for _ in range(1):
            for _, (image, label) in enumerate(loader()):
                out = layer(image)
                loss = loss_fn(out, label)
                loss.backward()
                optimizer.step()
                optimizer.clear_grad()

    paddle.disable_static()
    model_layer = _LinearNet()
    loss_func = nn.CrossEntropyLoss()
    adam = opt.Adam(learning_rate=0.001, parameters=model_layer.parameters())

    dataset = _RandomDataset(64)
    data_loader = paddle.io.DataLoader(dataset,
                                       batch_size=16,
                                       shuffle=True,
                                       drop_last=True,
                                       num_workers=2)

    train(model_layer, data_loader, loss_func, adam)
    paddle.jit.save(layer=model_layer,
                    path=os.path.join(model_path, 'model'),
                    input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
Ejemplo n.º 10
0
def train(print_result=True):
    # 1. enable dynamic mode
    # device = paddle.set_device('gpu')
    # paddle.disable_static(device)

    # 2. initialize parallel environment
    dist.init_parallel_env()

    # 3. create data parallel layer & optimizer
    layer = LinearNet()
    dp_layer = paddle.DataParallel(layer)

    loss_fn = nn.MSELoss()
    adam = opt.Adam(learning_rate=0.001, parameters=dp_layer.parameters())

    dataset = FakeDataset()
    # loader = paddle.io.DataLoader(dataset, batch_size=2, places=device, num_workers=2)
    loader = paddle.io.DataLoader(dataset, batch_size=2, num_workers=2)
    # 4. run layer
    for inputs, labels in loader:
        # inputs = paddle.randn([10, 10], 'float32')
        outputs = dp_layer(inputs)
        # labels = paddle.randn([10, 1], 'float32')
        loss = loss_fn(outputs, labels)

        if print_result is True:
            print("loss:", loss.numpy())

        # loss = dp_layer.scale_loss(loss)
        loss.backward()
        # dp_layer.apply_collective_grads()

        adam.step()
        adam.clear_grad()
Ejemplo n.º 11
0
 def __init__(self,
              recmodel : PairWiseModel,
              config : dict):
     self.model = recmodel
     self.weight_decay = config['decay']
     self.config = config
     self.lr = config['lr']
     self.opt = optimizer.Adam(parameters=self.model.parameters(), learning_rate=self.lr)
     if self.config['multicpu']:
         self.opt = fleet.distributed_optimizer(self.opt)
Ejemplo n.º 12
0
 def __call__(self, parameters):
     opt = optim.Adam(learning_rate=self.learning_rate,
                      beta1=self.beta1,
                      beta2=self.beta2,
                      epsilon=self.epsilon,
                      weight_decay=self.weight_decay,
                      grad_clip=self.grad_clip,
                      name=self.name,
                      lazy_mode=self.lazy_mode,
                      parameters=parameters)
     return opt
Ejemplo n.º 13
0
    def __init__(self,
                 state_dim,
                 action_dim,
                 max_action,
                 gamma=0.99,
                 tau=0.001):
        # 动作网络与目标动作网络
        self.actor = Actor(state_dim, action_dim, max_action)
        self.actor_target = copy.deepcopy(self.actor)
        self.actor_optimizer = optim.Adam(parameters=self.actor.parameters(),
                                          learning_rate=1e-4)

        # 值函数网络与目标值函数网络
        self.critic = Critic(state_dim, action_dim)
        self.critic_target = copy.deepcopy(self.critic)
        self.critic_optimizer = optim.Adam(parameters=self.critic.parameters(),
                                           weight_decay=1e-2)

        self.gamma = gamma
        self.tau = tau
Ejemplo n.º 14
0
 def __call__(self, model_list):
     # model_list is None in static graph
     parameters = sum([m.parameters()
                       for m in model_list], []) if model_list else None
     opt = optim.Adam(learning_rate=self.learning_rate,
                      beta1=self.beta1,
                      beta2=self.beta2,
                      epsilon=self.epsilon,
                      weight_decay=self.weight_decay,
                      grad_clip=self.grad_clip,
                      name=self.name,
                      lazy_mode=self.lazy_mode,
                      multi_precision=self.multi_precision,
                      parameters=parameters)
     return opt
Ejemplo n.º 15
0
    def build_and_train_model(self):
        # create network
        layer = LinearNet()
        loss_fn = nn.CrossEntropyLoss()

        adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

        # create data loader
        # TODO: using new DataLoader cause unknown Timeout on windows, replace it
        loader = random_batch_reader()

        # train
        train(layer, loader, loss_fn, adam)

        return layer, adam
    def test_create_param_lr_with_1_for_coverage(self):
        x = paddle.fluid.framework.ParamBase(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="x",
            optimize_attr={'learning_rate': 1.0})
        x.value().get_tensor().set(
            np.random.random((5, 10)).astype('float32'),
            paddle.fluid.framework._current_expected_place())

        y = paddle.ones([5, 10])
        z = x + y
        opt = optimizer.Adam(learning_rate=self.lr, parameters=[x])
        z.backward()
        opt.step()
Ejemplo n.º 17
0
    def test_paddle_save_load_v2(self):
        paddle.disable_static()

        class StepDecay(LRScheduler):
            def __init__(self,
                         learning_rate,
                         step_size,
                         gamma=0.1,
                         last_epoch=-1,
                         verbose=False):
                self.step_size = step_size
                self.gamma = gamma
                super(StepDecay, self).__init__(learning_rate, last_epoch,
                                                verbose)

            def get_lr(self):
                i = self.last_epoch // self.step_size
                return self.base_lr * (self.gamma**i)

        layer = LinearNet()
        inps = paddle.randn([2, IMAGE_SIZE])
        adam = opt.Adam(learning_rate=StepDecay(0.1, 1),
                        parameters=layer.parameters())
        y = layer(inps)
        y.mean().backward()
        adam.step()
        state_dict = adam.state_dict()
        path = 'paddle_save_load_v2/model.pdparams'
        with self.assertRaises(TypeError):
            paddle.save(state_dict, path, use_binary_format='False')
        # legacy paddle.save, paddle.load
        paddle.framework.io._legacy_save(state_dict, path)
        load_dict_tensor = paddle.load(path, return_numpy=False)
        # legacy paddle.load, paddle.save
        paddle.save(state_dict, path)
        load_dict_np = paddle.framework.io._legacy_load(path)
        for k, v in state_dict.items():
            if isinstance(v, dict):
                self.assertTrue(v == load_dict_tensor[k])
            else:
                self.assertTrue(
                    np.array_equal(v.numpy(), load_dict_tensor[k].numpy()))
                if not np.array_equal(v.numpy(), load_dict_np[k]):
                    print(v.numpy())
                    print(load_dict_np[k])
                self.assertTrue(np.array_equal(v.numpy(), load_dict_np[k]))
Ejemplo n.º 18
0
def get_optimizer(config, parameters):
    clip = nn.ClipGradByNorm(clip_norm=config.optim.grad_clip)
    if config.optim.optimizer == 'Adam':
        return optim.Adam(parameters=parameters,
                          learning_rate=config.optim.lr,
                          weight_decay=config.optim.weight_decay,
                          beta1=config.optim.beta1,
                          beta2=0.999,
                          epsilon=config.optim.eps,
                          grad_clip=clip)
    elif config.optim.optimizer == 'RMSProp':
        return optim.RMSprop(parameters=parameters,
                             learning_rate=config.optim.lr,
                             weight_decay=config.optim.weight_decay,
                             grad_clip=clip)
    elif config.optim.optimizer == 'SGD':
        return optim.SGD(parameters=parameters,
                         learning_rate=config.optim.lr,
                         momentum=0.9,
                         grad_clip=clip)
    else:
        raise NotImplementedError('Optimizer {} not understood.'.format(
            config.optim.optimizer))
Ejemplo n.º 19
0
def train():
    """train"""
    # 1. initialize parallel environment
    dist.init_parallel_env()

    # 2. create data parallel layer & optimizer
    layer = LinearNet()
    dp_layer = paddle.DataParallel(layer)

    loss_fn = nn.MSELoss()
    adam = opt.Adam(
        learning_rate=0.001, parameters=dp_layer.parameters())

    # 3. run layer
    inputs = paddle.randn([10, 10], 'float32')
    outputs = dp_layer(inputs)
    labels = paddle.randn([10, 1], 'float32')
    loss = loss_fn(outputs, labels)

    loss.backward()

    adam.step()
    adam.clear_grad()
    assert len(loss) == 1
Ejemplo n.º 20
0
def train():
    # 1. initialize parallel environment (cpu & gpu)
    dist.init_parallel_env()

    # 2. set cpu place
    paddle.set_device('cpu')

    # 3. create data parallel layer & optimizer
    layer = LinearNet()
    dp_layer = paddle.DataParallel(layer)

    loss_fn = nn.MSELoss()
    adam = opt.Adam(learning_rate=0.001, parameters=dp_layer.parameters())

    # 4. run layer
    inputs = paddle.randn([10, 10], 'float32')
    outputs = dp_layer(inputs)
    labels = paddle.randn([10, 1], 'float32')
    loss = loss_fn(outputs, labels)

    loss.backward()

    adam.step()
    adam.clear_grad()
Ejemplo n.º 21
0
    def run(
            self,
            image,
            need_align=False,
            start_lr=0.1,
            final_lr=0.025,
            latent_level=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
                          11],  # for ffhq (0~17)
            step=100,
            mse_weight=1,
            pre_latent=None):

        if need_align:
            src_img = run_alignment(image)
        else:
            src_img = Image.open(image).convert("RGB")

        generator = self.generator
        generator.train()

        percept = LPIPS(net='vgg')
        # on PaddlePaddle, lpips's default eval mode means no gradients.
        percept.train()

        n_mean_latent = 4096

        transform = transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(256),
            transforms.Transpose(),
            transforms.Normalize([127.5, 127.5, 127.5], [127.5, 127.5, 127.5]),
        ])

        imgs = paddle.to_tensor(transform(src_img)).unsqueeze(0)

        if pre_latent is None:
            with paddle.no_grad():
                noise_sample = paddle.randn(
                    (n_mean_latent, generator.style_dim))
                latent_out = generator.style(noise_sample)

                latent_mean = latent_out.mean(0)

            latent_in = latent_mean.detach().clone().unsqueeze(0).tile(
                (imgs.shape[0], 1))
            latent_in = latent_in.unsqueeze(1).tile(
                (1, generator.n_latent, 1)).detach()

        else:
            latent_in = paddle.to_tensor(np.load(pre_latent)).unsqueeze(0)

        var_levels = list(latent_level)
        const_levels = [
            i for i in range(generator.n_latent) if i not in var_levels
        ]
        assert len(var_levels) > 0
        if len(const_levels) > 0:
            latent_fix = latent_in.index_select(paddle.to_tensor(const_levels),
                                                1).detach().clone()
            latent_in = latent_in.index_select(paddle.to_tensor(var_levels),
                                               1).detach().clone()

        latent_in.stop_gradient = False

        optimizer = optim.Adam(parameters=[latent_in], learning_rate=start_lr)

        pbar = tqdm(range(step))

        for i in pbar:
            t = i / step
            lr = get_lr(t, step, start_lr, final_lr)
            optimizer.set_lr(lr)

            if len(const_levels) > 0:
                latent_dict = {}
                for idx, idx2 in enumerate(var_levels):
                    latent_dict[idx2] = latent_in[:, idx:idx + 1]
                for idx, idx2 in enumerate(const_levels):
                    latent_dict[idx2] = (latent_fix[:, idx:idx + 1]).detach()
                latent_list = []
                for idx in range(generator.n_latent):
                    latent_list.append(latent_dict[idx])
                latent_n = paddle.concat(latent_list, 1)
            else:
                latent_n = latent_in

            img_gen, _ = generator([latent_n],
                                   input_is_latent=True,
                                   randomize_noise=False)

            batch, channel, height, width = img_gen.shape

            if height > 256:
                factor = height // 256

                img_gen = img_gen.reshape((batch, channel, height // factor,
                                           factor, width // factor, factor))
                img_gen = img_gen.mean([3, 5])

            p_loss = percept(img_gen, imgs).sum()
            mse_loss = F.mse_loss(img_gen, imgs)
            loss = p_loss + mse_weight * mse_loss

            optimizer.clear_grad()
            loss.backward()
            optimizer.step()

            pbar.set_description(
                (f"perceptual: {p_loss.numpy()[0]:.4f}; "
                 f"mse: {mse_loss.numpy()[0]:.4f}; lr: {lr:.4f}"))

        img_gen, _ = generator([latent_n],
                               input_is_latent=True,
                               randomize_noise=False)
        dst_img = make_image(img_gen)[0]
        dst_latent = latent_n.numpy()[0]

        os.makedirs(self.output_path, exist_ok=True)
        save_src_path = os.path.join(self.output_path, 'src.fitting.png')
        cv2.imwrite(save_src_path,
                    cv2.cvtColor(np.asarray(src_img), cv2.COLOR_RGB2BGR))
        save_dst_path = os.path.join(self.output_path, 'dst.fitting.png')
        cv2.imwrite(save_dst_path, cv2.cvtColor(dst_img, cv2.COLOR_RGB2BGR))
        save_npy_path = os.path.join(self.output_path, 'dst.fitting.npy')
        np.save(save_npy_path, dst_latent)

        return np.asarray(src_img), dst_img, dst_latent
Ejemplo n.º 22
0
epoch = 5
output = "work/Output/"
batch_size = 128
G_DIMENSION = 100
beta1=0.5
beta2=0.999
output_path = 'work/Output'
device = paddle.set_device('gpu')
paddle.disable_static(device)

real_label = 1.
fake_label = 0.

netD = Discriminator()
netG = Generator()
optimizerD = optim.Adam(parameters=netD.parameters(), learning_rate=lr, beta1=beta1, beta2=beta2)
optimizerG = optim.Adam(parameters=netG.parameters(), learning_rate=lr, beta1=beta1, beta2=beta2)

###训练过程
losses = [[], []]
#plt.ion()
now = 0
for pass_id in range(epoch):
    # enumerate()函数将一个可遍历的数据对象组合成一个序列列表
    for batch_id, data in enumerate(train_loader()):
        #训练判别器 
        optimizerD.clear_grad()
        real_cpu = data[0]
        label = paddle.full((batch_size,1,1,1),real_label,dtype='float32')
        output = netD(real_cpu)
        errD_real = loss(output,label)
 def test_optimizer_with_varbase_input(self):
     x = paddle.zeros([2, 3])
     with self.assertRaises(TypeError):
         optimizer.Adam(learning_rate=self.lr, parameters=x)
Ejemplo n.º 24
0
    model = DeepFRI(args)
    task_name = os.path.split(args.label_data_path)[-1]
    task_name = os.path.splitext(task_name)[0]
    args.task = task_name
    time_stamp = str(datetime.now()).replace(":",
                                             "-").replace(" ",
                                                          "_").split(".")[0]
    args.model_name = (
        f"models/{model.__class__.__name__}_{args.gc_layer}_{args.task}_{time_stamp}"
    )

    loss_fn = BCEWithLogitsLoss(reduction="none")
    optimizer = optim.Adam(
        parameters=model.parameters(),
        learning_rate=args.lr,
        beta1=0.95,
        beta2=0.99,
        weight_decay=args.weight_decay,
    )

    model_save_dir = os.path.split(args.model_name)[0]
    if model_save_dir:
        try:
            os.makedirs(model_save_dir)
        except FileExistsError:
            pass
    print(
        f"\n{args.task}: Training on {len(train_dataset)} protein samples and {len(valid_dataset)} for validation."
    )
    print(f"Starting  at {datetime.now()}\n")
    print(args)
Ejemplo n.º 25
0
# loss = nn.BCELoss()

# 改为 最小二乘损失函数 MSELoss
loss = nn.MSELoss()

# Create batch of latent vectors that we will use to visualize
#  the progression of the generator
fixed_noise = paddle.randn([32, 100, 1, 1], dtype='float32')

# Establish convention for real and fake labels during training
real_label = 1.
fake_label = 0.

# Setup Adam optimizers for both G and D
optimizerD = optim.Adam(parameters=netD.parameters(),
                        learning_rate=0.0002,
                        beta1=0.5,
                        beta2=0.999)
optimizerG = optim.Adam(parameters=netG.parameters(),
                        learning_rate=0.0002,
                        beta1=0.5,
                        beta2=0.999)

losses = [[], []]
#plt.ion()
now = 0
number = 0
for pass_id in range(100):
    for batch_id, (data, target) in enumerate(dataloader):
        ############################
        # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
        ###########################
Ejemplo n.º 26
0
            opt.step()
            opt.clear_grad()
            print("Epoch {} batch {}: loss = {}".format(
                epoch_id, batch_id, np.mean(loss.numpy())))


# enable dygraph mode
place = paddle.CPUPlace()
paddle.disable_static(place)

# 1. train & save model.

# create network
layer = LinearNet()
loss_fn = nn.CrossEntropyLoss()
adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

# create data loader
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
loader = paddle.io.DataLoader(dataset,
                              places=place,
                              batch_size=BATCH_SIZE,
                              shuffle=True,
                              drop_last=True,
                              num_workers=2)

# train
train(layer, loader, loss_fn, adam)

# save
model_path = "linear.example.model"
    def __init__(self, in_size, out_size):
        super(SimpleNet, self).__init__()
        self._linear = nn.Linear(in_size, out_size)

    @paddle.jit.to_static
    def forward(self, x):
        y = self._linear(x)
        z = self._linear(y)
        return z

# enable dygraph mode
paddle.disable_static() 

# train model
net = SimpleNet(8, 8)
adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
x = paddle.randn([4, 8], 'float32')
for i in range(10):
    out = net(x)
    loss = paddle.tensor.mean(out)
    loss.backward()
    adam.step()
    adam.clear_grad()

model_path = "simplenet.example.model.separate_params"
config = paddle.jit.SaveLoadConfig()
config.separate_params = True

# saving with configs.separate_params
paddle.jit.save(
    layer=net,
Ejemplo n.º 28
0
# enable dygraph mode
paddle.disable_static(place)

# load
fc = paddle.jit.load(model_path)

# inference
fc.eval()
x = paddle.randn([1, IMAGE_SIZE], 'float32')
pred = fc(x)

# fine-tune
fc.train()
loss_fn = nn.CrossEntropyLoss()
adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
loader = paddle.io.DataLoader(dataset,
    places=place,
    batch_size=BATCH_SIZE,
    shuffle=True,
    drop_last=True,
    num_workers=2)
for epoch_id in range(EPOCH_NUM):
    for batch_id, (image, label) in enumerate(loader()):
        out = fc(image)
        loss = loss_fn(out, label)
        loss.backward()
        adam.step()
        adam.clear_grad()
        print("Epoch {} batch {}: loss = {}".format(
            epoch_id, batch_id, np.mean(loss.numpy())))
Ejemplo n.º 29
0
    def __init__(self):
        super(LinearNet, self).__init__()
        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

    @paddle.jit.to_static
    def forward(self, x):
        return self._linear(x)

# set device
paddle.set_device('gpu' if USE_GPU else 'cpu')

# create network
layer = LinearNet()
dp_layer = paddle.DataParallel(layer)
loss_fn = nn.CrossEntropyLoss()
adam = opt.Adam(learning_rate=0.001, parameters=dp_layer.parameters())

# create data loader
loader = paddle.io.DataLoader.from_generator(capacity=5)
loader.set_batch_generator(random_batch_reader())

for epoch_id in range(EPOCH_NUM):
    for batch_id, (image, label) in enumerate(loader()):
        out = layer(image)
        loss = loss_fn(out, label)

        loss.backward()

        adam.step()
        adam.clear_grad()
        print("Epoch {} batch {}: loss = {}".format(
        x = F.relu(F.dropout(self.fc1(inputs), 0.6))
        x = self.fc2(x)

        return F.softmax(x, -1)

    def select_action(self, inputs):
        x = paddle.to_tensor(inputs).astype('float32').unsqueeze(0)
        probs = self.forward(x)
        m = Categorical(probs)
        action = m.sample([1])
        self.saved_log_probs.append(m.log_prob(action))

        return action

policy = Policy()
optimizer = optim.Adam(parameters=policy.parameters(), learning_rate=1e-2)
eps = np.finfo(np.float32).eps.item()

def finish_episode():
    R = 0
    policy_loss = []
    for r in policy.rewards[::-1]:
        R = r + gamma * R
    returns = paddle.full([len(policy.rewards)], R)
    returns = (returns - returns.mean()) / (returns.std() + eps)
    for log_prob, R in zip(policy.saved_log_probs, returns):
        policy_loss.append(-log_prob * R)
    optimizer.clear_grad()
    policy_loss = paddle.concat(policy_loss).sum()
    policy_loss.backward()
    optimizer.step()