def test_parse(self): pixel = layer.data(name='pixel3', type=data_type.dense_vector(784)) label = layer.data(name='label3', type=data_type.integer_value(10)) hidden = layer.fc(input=pixel, size=100, act=conf_helps.SigmoidActivation()) inference = layer.fc(input=hidden, size=10, act=conf_helps.SoftmaxActivation()) maxid = layer.max_id(input=inference) cost1 = layer.classification_cost(input=inference, label=label) cost2 = layer.cross_entropy_cost(input=inference, label=label) topology.Topology(cost2).proto() topology.Topology([cost1]).proto() topology.Topology([cost1, cost2]).proto() topology.Topology([inference, maxid]).proto()
def test_sampling_layer(self): maxid = layer.max_id(input=inference) sampling_id = layer.sampling_id(input=inference) eos = layer.eos(input=maxid, eos_id=5) print layer.parse_network(maxid, sampling_id, eos)
def test_sampling_layer(self): maxid = layer.max_id(input=inference) sampling_id = layer.sampling_id(input=inference) eos = layer.eos(input=maxid, eos_id=5) layer.printer(maxid) print layer.parse_network([maxid, sampling_id, eos])