Ejemplo n.º 1
0
def inner_product_cost(input,
                       label,
                       weight,
                       height,
                       width,
                       num_channel,
                       interp='nearest',
                       is_angle=False):
    """If is_angle, we can not back propagate through the angle, only back
       through the inner product, the loss is not consistent with the evaluation.
    """
    # make sure all the input label and weight have the same size
    if height > 1 and width > 1:
        input = pd.bilinear_interp(input=input,
                                   out_size_x=width,
                                   out_size_y=height)
        label = pd.bilinear_interp(input=label,
                                   out_size_x=width,
                                   out_size_y=height)
        if weight:
            weight = image_resize_func[interp](input=weight,
                                               out_size_x=width,
                                               out_size_y=height)

    size = height * width * num_channel

    input = util_layers.norm(input,
                             height,
                             width,
                             num_channel,
                             trans_back=False)
    label = util_layers.norm(label,
                             height,
                             width,
                             num_channel,
                             trans_back=False)

    inner = pd.mixed(size=size,
                     input=[pd.dotmul_operator(a=input, b=label, scale=1.0)])
    inner = pd.resize(input=pd.sum_cost(input=inner),
                      size=height * width,
                      height=height,
                      width=width)
    if is_angle:
        inner = util_layers.math_op(input=inner, act=pd.activation.Acos())
    else:
        inner = pd.slope_intercept(input=inner, slope=-1, intercept=1.0)

    if weight:
        inner_error = sum_weighted_loss(inner, weight, size=height * width)
    else:
        fac = 1.0 / float(height * width)
        inner = pd.slope_intercept(input=inner, slope=fac, intercept=0.0)
        inner_error = pd.sum_cost(input=inner)

    return inner_error
Ejemplo n.º 2
0
def sum_weighted_loss(loss, weight, size=1):
    """Loss has input batch_size x image_size, weight has input batch_size x weight
        ( i * w ) / sum(W)
       The output is normalized weighted loss
    """
    weighted_loss = pd.mixed(
        size=size, input=[pd.dotmul_operator(a=loss, b=weight, scale=1.0)])
    weight_fac = pd.sum_cost(input=weight)
    weight_fac = util_layers.math_op(input=weight_fac, act=pd.activation.Inv())
    weighted_loss = pd.scaling(input=loss, weight=weight_fac)
    weighted_loss = pd.sum_cost(input=weighted_loss)

    return weighted_loss
Ejemplo n.º 3
0
def ns_ele_l2_cost(input,
                   label,
                   weight,
                   height,
                   width,
                   num_channel=None,
                   interp='nearest'):
    assert interp in image_resize_func.keys()
    # make sure all the input label and weight have the same size
    input = pd.bilinear_interp(input=input,
                               out_size_x=width,
                               out_size_y=height)
    label = image_resize_func[interp](input=label,
                                      out_size_x=width,
                                      out_size_y=height)
    weight = image_resize_func[interp](input=weight,
                                       out_size_x=width,
                                       out_size_y=height)

    # reshape the orignal layer
    # input has shape  c x h x w change to h x w x c
    input_ts = pd.transpose(input=input,
                            trans_order=[1, 2, 0],
                            height=height,
                            width=width)
    input_rs = pd.resize(input=input_ts, size=num_channel, height=1, width=1)

    label_ts = pd.transpose(input=label,
                            trans_order=[1, 2, 0],
                            height=height,
                            width=width)
    label_rs = pd.resize(input=label_ts, size=num_channel, height=1, width=1)
    weight_rs = pd.resize(input=weight, size=1, height=1, width=1)

    cost_rs = pd.mse_cost(input=input_rs, label=label_rs)
    sqrt_l2_cost = util_layers.math_op(input=cost_rs, act=pd.activation.Sqrt())
    sqrt_l2_cost = pd.mixed(
        size=1,
        input=[pd.dotmul_operator(a=sqrt_l2_cost, b=weight_rs, scale=1.0)])
    sqrt_l2_cost = pd.resize(input=sqrt_l2_cost,
                             size=height * width,
                             height=height,
                             width=width)

    weight_fac = pd.sum_cost(input=weight)
    weight_fac = util_layers.math_op(input=weight_fac, act=pd.activation.Inv())
    sqrt_l2_cost = pd.scaling(input=sqrt_l2_cost, weight=weight_fac)
    cost = pd.sum_cost(input=sqrt_l2_cost)

    return cost
Ejemplo n.º 4
0
def iou_score(input, label, weight, height, width, class_num, is_cost=True):
    """ class num is semantic classes plus background,
        this score can also serve as iou cost for training
    """
    # input = pd.resize(input=input, size=height * width)
    # label = pd.resize(input=label, size=height * width)

    weight = pd.nearest_interp(input=weight,
                               out_size_x=width,
                               out_size_y=height)
    if not is_cost:
        # if not is cost, then it is eval, we can do
        # one hot for label. Otherwise
        input = util_layers.math_op(input=[input, weight], op='dot')
        input_one_hot = util_layers.ele_one_hot(input, class_num, height,
                                                width)
    else:
        input_one_hot = input
        input_one_hot = pd.bilinear_interp(input=input_one_hot,
                                           out_size_x=width,
                                           out_size_y=height)

    label = pd.nearest_interp(input=label, out_size_x=width, out_size_y=height)
    label = util_layers.math_op(input=[label, weight], op='dot')

    label_one_hot = util_layers.ele_one_hot(label, class_num, height, width)
    inter = util_layers.math_op(input=[input_one_hot, label_one_hot], op='dot')
    union = pd.addto(input=[input_one_hot, label_one_hot],
                     act=pd.activation.Linear(),
                     bias_attr=False)
    inter_neg = pd.slope_intercept(input=inter, slope=-1)

    union = pd.addto(input=[union, inter_neg],
                     act=pd.activation.Linear(),
                     bias_attr=False)

    inter = pd.resize(input=inter, size=height * width)
    inter = pd.sum_cost(input=inter)
    union = pd.resize(input=union, size=height * width)
    union = pd.sum_cost(input=union)

    union_inv = util_layers.math_op(input=union, act=pd.activation.Inv())
    iou = pd.mixed(size=1,
                   input=[pd.dotmul_operator(a=inter, b=union_inv, scale=1.0)])
    iou = pd.resize(input=iou, size=class_num)

    if is_cost:
        iou = pd.sum_cost(iou)

    return iou
Ejemplo n.º 5
0
    def test_cost_layer(self):
        cost1 = layer.classification_cost(input=inference, label=label)
        cost2 = layer.classification_cost(input=inference,
                                          label=label,
                                          weight=weight)
        cost3 = layer.cross_entropy_cost(input=inference, label=label)
        cost4 = layer.cross_entropy_with_selfnorm_cost(input=inference,
                                                       label=label)
        cost5 = layer.mse_cost(input=inference, label=label)
        cost6 = layer.mse_cost(input=inference, label=label, weight=weight)
        cost7 = layer.multi_binary_label_cross_entropy_cost(input=inference,
                                                            label=label)
        cost8 = layer.rank_cost(left=score, right=score, label=score)
        cost9 = layer.lambda_cost(input=inference, score=score)
        cost10 = layer.sum_cost(input=inference)
        cost11 = layer.huber_cost(input=score, label=label)

        print layer.parse_network(cost1, cost2)
        print layer.parse_network(cost3, cost4)
        print layer.parse_network(cost5, cost6)
        print layer.parse_network(cost7, cost8, cost9, cost10, cost11)

        crf = layer.crf(input=inference, label=label)
        crf_decoding = layer.crf_decoding(input=inference, size=3)
        ctc = layer.ctc(input=inference, label=label)
        warp_ctc = layer.warp_ctc(input=pixel, label=label)
        nce = layer.nce(input=inference, label=label, num_classes=3)
        hsigmoid = layer.hsigmoid(input=inference, label=label, num_classes=3)

        print layer.parse_network(crf, crf_decoding, ctc, warp_ctc, nce,
                                  hsigmoid)
Ejemplo n.º 6
0
    def test_cost_layer(self):
        cost1 = layer.classification_cost(input=inference, label=label)
        cost2 = layer.classification_cost(
            input=inference, label=label, weight=weight)
        cost3 = layer.cross_entropy_cost(input=inference, label=label)
        cost4 = layer.cross_entropy_with_selfnorm_cost(
            input=inference, label=label)
        cost5 = layer.square_error_cost(input=inference, label=label)
        cost6 = layer.square_error_cost(
            input=inference, label=label, weight=weight)
        cost7 = layer.multi_binary_label_cross_entropy_cost(
            input=inference, label=label)
        cost8 = layer.rank_cost(left=score, right=score, label=score)
        cost9 = layer.lambda_cost(input=inference, score=score)
        cost10 = layer.sum_cost(input=inference)
        cost11 = layer.huber_regression_cost(input=score, label=label)
        cost12 = layer.huber_classification_cost(input=score, label=label)

        print layer.parse_network([cost1, cost2])
        print layer.parse_network([cost3, cost4])
        print layer.parse_network([cost5, cost6])
        print layer.parse_network([cost7, cost8, cost9, cost10, cost11, cost12])

        crf = layer.crf(input=inference, label=label)
        crf_decoding = layer.crf_decoding(input=inference, size=3)
        ctc = layer.ctc(input=inference, label=label)
        warp_ctc = layer.warp_ctc(input=pixel, label=label)
        nce = layer.nce(input=inference, label=label, num_classes=3)
        hsigmoid = layer.hsigmoid(input=inference, label=label, num_classes=3)

        print layer.parse_network(
            [crf, crf_decoding, ctc, warp_ctc, nce, hsigmoid])
Ejemplo n.º 7
0
def pixel_accuracy(input, label, weight, height, width):
    label = pd.nearest_interp(input=label, out_size_x=width, out_size_y=height)
    weight = pd.nearest_interp(input=weight,
                               out_size_x=width,
                               out_size_y=height)

    label_neg = pd.slope_intercept(input=label, slope=-1)
    diff = pd.addto(input=[input, label_neg],
                    act=pd.activation.Linear(),
                    bias_attr=False)
    correct = util_layers.math_op(input=diff, act=pd.activation.IsZero())

    correct = util_layers.math_op(input=[correct, weight], op='dot')

    correct = pd.sum_cost(input=correct)
    eval_pixels_num = pd.sum_cost(input=weight)
    divider = util_layers.math_op(input=eval_pixels_num,
                                  act=pd.activation.Inv())
    acc = util_layers.math_op(input=[correct, divider], op='dot')

    return acc
Ejemplo n.º 8
0
def ele_norm_cost(input,
                  label,
                  weight,
                  height=None,
                  width=None,
                  num_channel=None,
                  cost_type='l1'):
    if height > 1 and width > 1:
        input = pd.bilinear_interp(input=input,
                                   out_size_x=width,
                                   out_size_y=height)
        label = pd.bilinear_interp(input=label,
                                   out_size_x=width,
                                   out_size_y=height)
        if weight:
            weight = pd.nearest_interp(input=weight,
                                       out_size_x=width,
                                       out_size_y=height)

    size = height * width * num_channel
    if weight:
        input = pd.mixed(
            size=size,
            input=[pd.dotmul_operator(a=input, b=weight, scale=1.0)])
        label = pd.mixed(
            size=size,
            input=[pd.dotmul_operator(a=label, b=weight, scale=1.0)])
        cost = cost_func[cost_type](input=input, label=label)
        fac = pd.sum_cost(input=weight)
        fac = util_layers.math_op(input=fac, act=pd.activation.Inv())
        cost = pd.scaling(input=cost, weight=fac)
        cost = pd.sum_cost(input=cost)
    else:
        cost = cost_func[cost_type](input=input, label=label)
        fac = 1.0 / float(height * width)
        cost = pd.slope_intercept(input=cost, slope=fac, intercept=0.0)
        cost = pd.sum_cost(input=cost)

    return cost
Ejemplo n.º 9
0
def norm(input, height, width, channel, type='l2', trans_back=True):
    """Channel wise normalize each layer
    """
    size = height * width * channel
    if height > 1 or width > 1:
        input= pd.transpose(input=input,
                            trans_order=[1, 2, 0],
                            height=height,
                            width=width)
        input = pd.resize(input=input, size=channel)

    if type == 'l2':
        norm = pd.mixed(size=size,
                        input=[pd.dotmul_operator(a=input,
                                                  b=input,
                                                  scale=1.0)])
        norm = pd.sum_cost(input=norm)
        norm = math_op(norm, pd.activation.Sqrt())

    if type == 'l1':
        norm = math_op(input, pd.activation.Abs())
        norm = pd.sum_cost(input=norm)

    norm_inv = math_op(norm, pd.activation.Inv())
    norm_inv = pd.repeat(input=norm_inv, num_repeats=3)
    input = math_op(input=[input, norm_inv],
                    act=None, op='dot', size=size)

    if trans_back:
        input = pd.resize(input=input, size=size)
        input = pd.transpose(input=input,
                             trans_order=[2, 0, 1],
                             height=width,
                             width=channel,
                             channels=height)
    return input
Ejemplo n.º 10
0
def reduce(input, shape, op, axis=1):
    """reduce with op in axis dimension

       shape: [channel, height, width]
    """
    if op == 'sum':
        if axis == 1:
            input= pd.transpose(input=input,
                                trans_order=[1, 2, 0],
                                height=shape[1],
                                width=shape[2])
        input = pd.resize(input=input, size=shape[0],
                          height=1, width=1)
        input = pd.sum_cost(input=input)
        input = pd.resize(input=input, size=shape[1] * shape[2],
                          height=shape[1], width=shape[2])

    return input
Ejemplo n.º 11
0
def relative_l1(input,
                label,
                weight,
                height,
                width,
                interp='nearest',
                is_inverse=False):
    """Relative l1 loss for depth
    """

    assert interp in image_resize_func.keys()

    # make sure all the input label and weight have the same size
    if height > 1 and width > 1:
        input = pd.bilinear_interp(input=input,
                                   out_size_x=width,
                                   out_size_y=height)
        label = pd.bilinear_interp(input=label,
                                   out_size_x=width,
                                   out_size_y=height)
        if weight:
            weight = image_resize_func[interp](input=weight,
                                               out_size_x=width,
                                               out_size_y=height)

    label_inv = util_layers.math_op(input=label, act=pd.activation.Inv())
    label_neg = pd.slope_intercept(input=label, slope=-1)
    diff = pd.addto(input=[input, label_neg],
                    act=pd.activation.Abs(),
                    bias_attr=False)

    rel_error = pd.mixed(
        size=1, input=[pd.dotmul_operator(a=diff, b=label_inv, scale=1.0)])

    if weight:
        rel_error = sum_weighted_loss(rel_error, weight, size=height * width)
    else:
        fac = 1.0 / float(height * width)
        inner = pd.slope_intercept(input=inner, slope=fac, intercept=0.0)
        inner_error = pd.sum_cost(input=inner)

    return rel_error