def _fuse_linear_bn_weights(linear_w, linear_b, bn_rm, bn_rv, bn_eps, bn_w, bn_b): '''fuse weights and bias of linear and bn''' if linear_b is None: linear_b = paddle.zeros_like(bn_rm) bn_scale = bn_w * paddle.rsqrt(bn_rv + bn_eps) fused_w = linear_w * bn_scale.unsqueeze(-1) fused_b = (linear_b - bn_rm) * bn_scale + bn_b return fused_w, fused_b
def _fuse_conv_bn_weights(conv_w, conv_b, bn_rm, bn_rv, bn_eps, bn_w, bn_b): '''fuse weights and bias of conv and bn''' if conv_b is None: conv_b = paddle.zeros_like(bn_rm) if bn_w is None: bn_w = paddle.ones_like(bn_rm) if bn_b is None: bn_b = paddle.zeros_like(bn_rm) bn_var_rsqrt = paddle.rsqrt(bn_rv + bn_eps) conv_w = conv_w * \ (bn_w * bn_var_rsqrt).reshape([-1] + [1] * (len(conv_w.shape) - 1)) conv_b = (conv_b - bn_rm) * bn_var_rsqrt * bn_w + bn_b return conv_w, conv_b
def forward(self, input, style): batch, in_channel, height, width = input.shape style = self.modulation(style).reshape((batch, 1, in_channel, 1, 1)) weight = self.scale * self.weight * style if self.demodulate: demod = paddle.rsqrt((weight * weight).sum([2, 3, 4]) + 1e-8) weight = weight * demod.reshape((batch, self.out_channel, 1, 1, 1)) weight = weight.reshape((batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size)) if self.upsample: input = input.reshape((1, batch * in_channel, height, width)) weight = weight.reshape((batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size)) weight = weight.transpose((0, 2, 1, 3, 4)).reshape( (batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size)) out = F.conv2d_transpose(input, weight, padding=0, stride=2, groups=batch) _, _, height, width = out.shape out = out.reshape((batch, self.out_channel, height, width)) out = self.blur(out) elif self.downsample: input = self.blur(input) _, _, height, width = input.shape input = input.reshape((1, batch * in_channel, height, width)) out = F.conv2d(input, weight, padding=0, stride=2, groups=batch) _, _, height, width = out.shape out = out.reshape((batch, self.out_channel, height, width)) else: input = input.reshape((1, batch * in_channel, height, width)) out = F.conv2d(input, weight, padding=self.padding, groups=batch) _, _, height, width = out.shape out = out.reshape((batch, self.out_channel, height, width)) return out
def __init__(self, betas): super().__init__() betas = betas.astype(np.float64) timesteps = betas.shape[0] self.num_timesteps = int(timesteps) alphas = 1 - betas alphas_cumprod = paddle.to_tensor(np.cumprod(alphas.numpy(), 0)) alphas_cumprod_prev = paddle.concat( (paddle.to_tensor([1], dtype=np.float64), alphas_cumprod[:-1]), 0) posterior_variance = betas * (1 - alphas_cumprod_prev) / ( 1 - alphas_cumprod) self.register("betas", betas) self.register("alphas_cumprod", alphas_cumprod) self.register("alphas_cumprod_prev", alphas_cumprod_prev) self.register("sqrt_alphas_cumprod", paddle.sqrt(alphas_cumprod)) self.register("sqrt_one_minus_alphas_cumprod", paddle.sqrt(1 - alphas_cumprod)) self.register("log_one_minus_alphas_cumprod", paddle.log(1 - alphas_cumprod)) self.register("sqrt_recip_alphas_cumprod", paddle.rsqrt(alphas_cumprod)) self.register("sqrt_recipm1_alphas_cumprod", paddle.sqrt(1 / alphas_cumprod - 1)) self.register("posterior_variance", posterior_variance) self.register( "posterior_log_variance_clipped", paddle.log(posterior_variance.clip(min=1e-20)), ) self.register( "posterior_mean_coef1", (betas * paddle.sqrt(alphas_cumprod_prev) / (1 - alphas_cumprod)), ) self.register( "posterior_mean_coef2", ((1 - alphas_cumprod_prev) * paddle.sqrt(alphas) / (1 - alphas_cumprod)), )
def test_tensor_patch_method(self): paddle.disable_static() x_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype) y_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype) z_np = np.random.uniform(-1, 1, [6, 9]).astype(self.dtype) x = paddle.to_tensor(x_np) y = paddle.to_tensor(y_np) z = paddle.to_tensor(z_np) a = paddle.to_tensor([[1, 1], [2, 2], [3, 3]]) b = paddle.to_tensor([[1, 1], [2, 2], [3, 3]]) # 1. Unary operation for Tensor self.assertEqual(x.dim(), 2) self.assertEqual(x.ndimension(), 2) self.assertEqual(x.ndim, 2) self.assertEqual(x.size, 6) self.assertEqual(x.numel(), 6) self.assertTrue(np.array_equal(x.exp().numpy(), paddle.exp(x).numpy())) self.assertTrue( np.array_equal(x.tanh().numpy(), paddle.tanh(x).numpy())) self.assertTrue( np.array_equal(x.atan().numpy(), paddle.atan(x).numpy())) self.assertTrue(np.array_equal(x.abs().numpy(), paddle.abs(x).numpy())) m = x.abs() self.assertTrue( np.array_equal(m.sqrt().numpy(), paddle.sqrt(m).numpy())) self.assertTrue( np.array_equal(m.rsqrt().numpy(), paddle.rsqrt(m).numpy())) self.assertTrue( np.array_equal(x.ceil().numpy(), paddle.ceil(x).numpy())) self.assertTrue( np.array_equal(x.floor().numpy(), paddle.floor(x).numpy())) self.assertTrue(np.array_equal(x.cos().numpy(), paddle.cos(x).numpy())) self.assertTrue( np.array_equal(x.acos().numpy(), paddle.acos(x).numpy())) self.assertTrue( np.array_equal(x.asin().numpy(), paddle.asin(x).numpy())) self.assertTrue(np.array_equal(x.sin().numpy(), paddle.sin(x).numpy())) self.assertTrue( np.array_equal(x.sinh().numpy(), paddle.sinh(x).numpy())) self.assertTrue( np.array_equal(x.cosh().numpy(), paddle.cosh(x).numpy())) self.assertTrue( np.array_equal(x.round().numpy(), paddle.round(x).numpy())) self.assertTrue( np.array_equal(x.reciprocal().numpy(), paddle.reciprocal(x).numpy())) self.assertTrue( np.array_equal(x.square().numpy(), paddle.square(x).numpy())) self.assertTrue( np.array_equal(x.rank().numpy(), paddle.rank(x).numpy())) self.assertTrue( np.array_equal(x[0].t().numpy(), paddle.t(x[0]).numpy())) self.assertTrue( np.array_equal(x.asinh().numpy(), paddle.asinh(x).numpy())) ### acosh(x) = nan, need to change input t_np = np.random.uniform(1, 2, [2, 3]).astype(self.dtype) t = paddle.to_tensor(t_np) self.assertTrue( np.array_equal(t.acosh().numpy(), paddle.acosh(t).numpy())) self.assertTrue( np.array_equal(x.atanh().numpy(), paddle.atanh(x).numpy())) d = paddle.to_tensor([[1.2285208, 1.3491015, 1.4899898], [1.30058, 1.0688717, 1.4928783], [1.0958099, 1.3724753, 1.8926544]]) d = d.matmul(d.t()) # ROCM not support cholesky if not fluid.core.is_compiled_with_rocm(): self.assertTrue( np.array_equal(d.cholesky().numpy(), paddle.cholesky(d).numpy())) self.assertTrue( np.array_equal(x.is_empty().numpy(), paddle.is_empty(x).numpy())) self.assertTrue( np.array_equal(x.isfinite().numpy(), paddle.isfinite(x).numpy())) self.assertTrue( np.array_equal( x.cast('int32').numpy(), paddle.cast(x, 'int32').numpy())) self.assertTrue( np.array_equal( x.expand([3, 2, 3]).numpy(), paddle.expand(x, [3, 2, 3]).numpy())) self.assertTrue( np.array_equal( x.tile([2, 2]).numpy(), paddle.tile(x, [2, 2]).numpy())) self.assertTrue( np.array_equal(x.flatten().numpy(), paddle.flatten(x).numpy())) index = paddle.to_tensor([0, 1]) self.assertTrue( np.array_equal( x.gather(index).numpy(), paddle.gather(x, index).numpy())) index = paddle.to_tensor([[0, 1], [1, 2]]) self.assertTrue( np.array_equal( x.gather_nd(index).numpy(), paddle.gather_nd(x, index).numpy())) self.assertTrue( np.array_equal( x.reverse([0, 1]).numpy(), paddle.reverse(x, [0, 1]).numpy())) self.assertTrue( np.array_equal( a.reshape([3, 2]).numpy(), paddle.reshape(a, [3, 2]).numpy())) self.assertTrue( np.array_equal( x.slice([0, 1], [0, 0], [1, 2]).numpy(), paddle.slice(x, [0, 1], [0, 0], [1, 2]).numpy())) self.assertTrue( np.array_equal( x.split(2)[0].numpy(), paddle.split(x, 2)[0].numpy())) m = paddle.to_tensor( np.random.uniform(-1, 1, [1, 6, 1, 1]).astype(self.dtype)) self.assertTrue( np.array_equal( m.squeeze([]).numpy(), paddle.squeeze(m, []).numpy())) self.assertTrue( np.array_equal( m.squeeze([1, 2]).numpy(), paddle.squeeze(m, [1, 2]).numpy())) m = paddle.to_tensor([2, 3, 3, 1, 5, 3], 'float32') self.assertTrue( np.array_equal(m.unique()[0].numpy(), paddle.unique(m)[0].numpy())) self.assertTrue( np.array_equal( m.unique(return_counts=True)[1], paddle.unique(m, return_counts=True)[1])) self.assertTrue(np.array_equal(x.flip([0]), paddle.flip(x, [0]))) self.assertTrue(np.array_equal(x.unbind(0), paddle.unbind(x, 0))) self.assertTrue(np.array_equal(x.roll(1), paddle.roll(x, 1))) self.assertTrue(np.array_equal(x.cumsum(1), paddle.cumsum(x, 1))) m = paddle.to_tensor(1) self.assertTrue(np.array_equal(m.increment(), paddle.increment(m))) m = x.abs() self.assertTrue(np.array_equal(m.log(), paddle.log(m))) self.assertTrue(np.array_equal(x.pow(2), paddle.pow(x, 2))) self.assertTrue(np.array_equal(x.reciprocal(), paddle.reciprocal(x))) # 2. Binary operation self.assertTrue( np.array_equal(x.divide(y).numpy(), paddle.divide(x, y).numpy())) self.assertTrue( np.array_equal( x.matmul(y, True, False).numpy(), paddle.matmul(x, y, True, False).numpy())) self.assertTrue( np.array_equal( x.norm(p='fro', axis=[0, 1]).numpy(), paddle.norm(x, p='fro', axis=[0, 1]).numpy())) self.assertTrue( np.array_equal(x.dist(y).numpy(), paddle.dist(x, y).numpy())) self.assertTrue( np.array_equal(x.cross(y).numpy(), paddle.cross(x, y).numpy())) m = x.expand([2, 2, 3]) n = y.expand([2, 2, 3]).transpose([0, 2, 1]) self.assertTrue( np.array_equal(m.bmm(n).numpy(), paddle.bmm(m, n).numpy())) self.assertTrue( np.array_equal( x.histogram(5, -1, 1).numpy(), paddle.histogram(x, 5, -1, 1).numpy())) self.assertTrue( np.array_equal(x.equal(y).numpy(), paddle.equal(x, y).numpy())) self.assertTrue( np.array_equal( x.greater_equal(y).numpy(), paddle.greater_equal(x, y).numpy())) self.assertTrue( np.array_equal( x.greater_than(y).numpy(), paddle.greater_than(x, y).numpy())) self.assertTrue( np.array_equal( x.less_equal(y).numpy(), paddle.less_equal(x, y).numpy())) self.assertTrue( np.array_equal( x.less_than(y).numpy(), paddle.less_than(x, y).numpy())) self.assertTrue( np.array_equal( x.not_equal(y).numpy(), paddle.not_equal(x, y).numpy())) self.assertTrue( np.array_equal( x.equal_all(y).numpy(), paddle.equal_all(x, y).numpy())) self.assertTrue( np.array_equal( x.allclose(y).numpy(), paddle.allclose(x, y).numpy())) m = x.expand([2, 2, 3]) self.assertTrue( np.array_equal( x.expand_as(m).numpy(), paddle.expand_as(x, m).numpy())) index = paddle.to_tensor([2, 1, 0]) self.assertTrue( np.array_equal( a.scatter(index, b).numpy(), paddle.scatter(a, index, b).numpy())) # 3. Bool tensor operation x = paddle.to_tensor([[True, False], [True, False]]) y = paddle.to_tensor([[False, False], [False, True]]) self.assertTrue( np.array_equal( x.logical_and(y).numpy(), paddle.logical_and(x, y).numpy())) self.assertTrue( np.array_equal( x.logical_not(y).numpy(), paddle.logical_not(x, y).numpy())) self.assertTrue( np.array_equal( x.logical_or(y).numpy(), paddle.logical_or(x, y).numpy())) self.assertTrue( np.array_equal( x.logical_xor(y).numpy(), paddle.logical_xor(x, y).numpy())) self.assertTrue( np.array_equal( x.logical_and(y).numpy(), paddle.logical_and(x, y).numpy())) a = paddle.to_tensor([[1, 2], [3, 4]]) b = paddle.to_tensor([[4, 3], [2, 1]]) self.assertTrue( np.array_equal( x.where(a, b).numpy(), paddle.where(x, a, b).numpy())) x_np = np.random.randn(3, 6, 9, 7) x = paddle.to_tensor(x_np) x_T = x.T self.assertTrue(x_T.shape, [7, 9, 6, 3]) self.assertTrue(np.array_equal(x_T.numpy(), x_np.T)) self.assertTrue(inspect.ismethod(a.dot)) self.assertTrue(inspect.ismethod(a.logsumexp)) self.assertTrue(inspect.ismethod(a.multiplex)) self.assertTrue(inspect.ismethod(a.prod)) self.assertTrue(inspect.ismethod(a.scale)) self.assertTrue(inspect.ismethod(a.stanh)) self.assertTrue(inspect.ismethod(a.add_n)) self.assertTrue(inspect.ismethod(a.max)) self.assertTrue(inspect.ismethod(a.maximum)) self.assertTrue(inspect.ismethod(a.min)) self.assertTrue(inspect.ismethod(a.minimum)) self.assertTrue(inspect.ismethod(a.floor_divide)) self.assertTrue(inspect.ismethod(a.remainder)) self.assertTrue(inspect.ismethod(a.floor_mod)) self.assertTrue(inspect.ismethod(a.multiply)) self.assertTrue(inspect.ismethod(a.logsumexp)) self.assertTrue(inspect.ismethod(a.inverse)) self.assertTrue(inspect.ismethod(a.log1p)) self.assertTrue(inspect.ismethod(a.erf)) self.assertTrue(inspect.ismethod(a.addmm)) self.assertTrue(inspect.ismethod(a.clip)) self.assertTrue(inspect.ismethod(a.trace)) self.assertTrue(inspect.ismethod(a.kron)) self.assertTrue(inspect.ismethod(a.isinf)) self.assertTrue(inspect.ismethod(a.isnan)) self.assertTrue(inspect.ismethod(a.concat)) self.assertTrue(inspect.ismethod(a.broadcast_to)) self.assertTrue(inspect.ismethod(a.scatter_nd_add)) self.assertTrue(inspect.ismethod(a.scatter_nd)) self.assertTrue(inspect.ismethod(a.shard_index)) self.assertTrue(inspect.ismethod(a.chunk)) self.assertTrue(inspect.ismethod(a.stack)) self.assertTrue(inspect.ismethod(a.strided_slice)) self.assertTrue(inspect.ismethod(a.unsqueeze)) self.assertTrue(inspect.ismethod(a.unstack)) self.assertTrue(inspect.ismethod(a.argmax)) self.assertTrue(inspect.ismethod(a.argmin)) self.assertTrue(inspect.ismethod(a.argsort)) self.assertTrue(inspect.ismethod(a.masked_select)) self.assertTrue(inspect.ismethod(a.topk)) self.assertTrue(inspect.ismethod(a.index_select)) self.assertTrue(inspect.ismethod(a.nonzero)) self.assertTrue(inspect.ismethod(a.sort)) self.assertTrue(inspect.ismethod(a.index_sample)) self.assertTrue(inspect.ismethod(a.mean)) self.assertTrue(inspect.ismethod(a.std)) self.assertTrue(inspect.ismethod(a.numel))
def rsqrt_wrapper(self, x): return paddle.rsqrt(x[0])
def rsqrt(x): return varbase_to_tensor(paddle.rsqrt(x, name=None))
def forward(self, input): return input * paddle.rsqrt( paddle.mean(input * input, 1, keepdim=True) + 1e-8)
def test_tensor_patch_method(self): paddle.disable_static() x_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype) y_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype) z_np = np.random.uniform(-1, 1, [6, 9]).astype(self.dtype) x = paddle.to_tensor(x_np) y = paddle.to_tensor(y_np) z = paddle.to_tensor(z_np) a = paddle.to_tensor([[1, 1], [2, 2], [3, 3]]) b = paddle.to_tensor([[1, 1], [2, 2], [3, 3]]) # 1. Unary operation for Tensor self.assertEqual(x.dim(), 2) self.assertEqual(x.ndimension(), 2) self.assertEqual(x.ndim, 2) self.assertEqual(x.size(), [2, 3]) self.assertTrue( np.array_equal(x.sigmoid().numpy(), fluid.layers.sigmoid(x).numpy())) self.assertTrue( np.array_equal(x.logsigmoid().numpy(), fluid.layers.logsigmoid(x).numpy())) self.assertTrue(np.array_equal(x.exp().numpy(), paddle.exp(x).numpy())) self.assertTrue( np.array_equal(x.tanh().numpy(), paddle.tanh(x).numpy())) self.assertTrue( np.array_equal(x.atan().numpy(), paddle.atan(x).numpy())) self.assertTrue( np.array_equal(x.tanh_shrink().numpy(), fluid.layers.tanh_shrink(x).numpy())) self.assertTrue(np.array_equal(x.abs().numpy(), paddle.abs(x).numpy())) m = x.abs() self.assertTrue( np.array_equal(m.sqrt().numpy(), paddle.sqrt(m).numpy())) self.assertTrue( np.array_equal(m.rsqrt().numpy(), paddle.rsqrt(m).numpy())) self.assertTrue( np.array_equal(x.ceil().numpy(), paddle.ceil(x).numpy())) self.assertTrue( np.array_equal(x.floor().numpy(), paddle.floor(x).numpy())) self.assertTrue(np.array_equal(x.cos().numpy(), paddle.cos(x).numpy())) self.assertTrue( np.array_equal(x.acos().numpy(), paddle.acos(x).numpy())) self.assertTrue( np.array_equal(x.asin().numpy(), paddle.asin(x).numpy())) self.assertTrue(np.array_equal(x.sin().numpy(), paddle.sin(x).numpy())) self.assertTrue( np.array_equal(x.sinh().numpy(), paddle.sinh(x).numpy())) self.assertTrue( np.array_equal(x.cosh().numpy(), paddle.cosh(x).numpy())) self.assertTrue( np.array_equal(x.round().numpy(), paddle.round(x).numpy())) self.assertTrue( np.array_equal(x.reciprocal().numpy(), paddle.reciprocal(x).numpy())) self.assertTrue( np.array_equal(x.square().numpy(), paddle.square(x).numpy())) self.assertTrue( np.array_equal(x.softplus().numpy(), fluid.layers.softplus(x).numpy())) self.assertTrue( np.array_equal(x.softsign().numpy(), fluid.layers.softsign(x).numpy())) self.assertTrue( np.array_equal(x.rank().numpy(), paddle.rank(x).numpy())) self.assertTrue( np.array_equal(x[0].t().numpy(), paddle.t(x[0]).numpy())) m = paddle.to_tensor(np.random.uniform(1, 2, [3, 3]), 'float32') m = m.matmul(m.t()) self.assertTrue( np.array_equal(m.cholesky().numpy(), paddle.cholesky(m).numpy())) self.assertTrue( np.array_equal(x.is_empty().numpy(), paddle.is_empty(x).numpy())) self.assertTrue( np.array_equal(x.isfinite().numpy(), paddle.isfinite(x).numpy())) self.assertTrue( np.array_equal( x.cast('int32').numpy(), paddle.cast(x, 'int32').numpy())) self.assertTrue( np.array_equal( x.expand([3, 2, 3]).numpy(), paddle.expand(x, [3, 2, 3]).numpy())) self.assertTrue( np.array_equal( x.tile([2, 2]).numpy(), paddle.tile(x, [2, 2]).numpy())) self.assertTrue( np.array_equal(x.flatten().numpy(), paddle.flatten(x).numpy())) index = paddle.to_tensor([0, 1]) self.assertTrue( np.array_equal( x.gather(index).numpy(), paddle.gather(x, index).numpy())) index = paddle.to_tensor([[0, 1], [1, 2]]) self.assertTrue( np.array_equal( x.gather_nd(index).numpy(), paddle.gather_nd(x, index).numpy())) self.assertTrue( np.array_equal( x.reverse([0, 1]).numpy(), paddle.reverse(x, [0, 1]).numpy())) self.assertTrue( np.array_equal( a.reshape([3, 2]).numpy(), paddle.reshape(a, [3, 2]).numpy())) self.assertTrue( np.array_equal( x.slice([0, 1], [0, 0], [1, 2]).numpy(), paddle.slice(x, [0, 1], [0, 0], [1, 2]).numpy())) self.assertTrue( np.array_equal( x.split(2)[0].numpy(), paddle.split(x, 2)[0].numpy())) m = paddle.to_tensor( np.random.uniform(-1, 1, [1, 6, 1, 1]).astype(self.dtype)) self.assertTrue( np.array_equal( m.squeeze([]).numpy(), paddle.squeeze(m, []).numpy())) self.assertTrue( np.array_equal( m.squeeze([1, 2]).numpy(), paddle.squeeze(m, [1, 2]).numpy())) m = paddle.to_tensor([2, 3, 3, 1, 5, 3], 'float32') self.assertTrue( np.array_equal(m.unique()[0].numpy(), paddle.unique(m)[0].numpy())) self.assertTrue( np.array_equal(m.unique_with_counts()[2], paddle.unique_with_counts(m)[2])) self.assertTrue(np.array_equal(x.flip([0]), paddle.flip(x, [0]))) self.assertTrue(np.array_equal(x.unbind(0), paddle.unbind(x, 0))) self.assertTrue(np.array_equal(x.roll(1), paddle.roll(x, 1))) self.assertTrue(np.array_equal(x.cumsum(1), paddle.cumsum(x, 1))) m = paddle.to_tensor(1) self.assertTrue(np.array_equal(m.increment(), paddle.increment(m))) m = x.abs() self.assertTrue(np.array_equal(m.log(), paddle.log(m))) self.assertTrue(np.array_equal(x.pow(2), paddle.pow(x, 2))) self.assertTrue(np.array_equal(x.reciprocal(), paddle.reciprocal(x))) # 2. Binary operation self.assertTrue( np.array_equal( x.matmul(y, True, False).numpy(), paddle.matmul(x, y, True, False).numpy())) self.assertTrue( np.array_equal( x.norm(p='fro', axis=[0, 1]).numpy(), paddle.norm(x, p='fro', axis=[0, 1]).numpy())) self.assertTrue( np.array_equal(x.dist(y).numpy(), paddle.dist(x, y).numpy())) self.assertTrue( np.array_equal(x.cross(y).numpy(), paddle.cross(x, y).numpy())) m = x.expand([2, 2, 3]) n = y.expand([2, 2, 3]).transpose([0, 2, 1]) self.assertTrue( np.array_equal(m.bmm(n).numpy(), paddle.bmm(m, n).numpy())) self.assertTrue( np.array_equal( x.histogram(5, -1, 1).numpy(), paddle.histogram(x, 5, -1, 1).numpy())) self.assertTrue( np.array_equal(x.equal(y).numpy(), paddle.equal(x, y).numpy())) self.assertTrue( np.array_equal( x.greater_equal(y).numpy(), paddle.greater_equal(x, y).numpy())) self.assertTrue( np.array_equal( x.greater_than(y).numpy(), paddle.greater_than(x, y).numpy())) self.assertTrue( np.array_equal( x.less_equal(y).numpy(), paddle.less_equal(x, y).numpy())) self.assertTrue( np.array_equal( x.less_than(y).numpy(), paddle.less_than(x, y).numpy())) self.assertTrue( np.array_equal( x.not_equal(y).numpy(), paddle.not_equal(x, y).numpy())) self.assertTrue( np.array_equal( x.equal_all(y).numpy(), paddle.equal_all(x, y).numpy())) self.assertTrue( np.array_equal( x.allclose(y).numpy(), paddle.allclose(x, y).numpy())) m = x.expand([2, 2, 3]) self.assertTrue( np.array_equal( x.expand_as(m).numpy(), paddle.expand_as(x, m).numpy())) index = paddle.to_tensor([2, 1, 0]) self.assertTrue( np.array_equal( a.scatter(index, b).numpy(), paddle.scatter(a, index, b).numpy())) # 3. Bool tensor operation x = paddle.to_tensor([[True, False], [True, False]]) y = paddle.to_tensor([[False, False], [False, True]]) self.assertTrue( np.array_equal(x.reduce_all().numpy(), paddle.reduce_all(x).numpy())) self.assertTrue( np.array_equal(x.reduce_any().numpy(), paddle.reduce_any(x).numpy())) self.assertTrue( np.array_equal( x.logical_and(y).numpy(), paddle.logical_and(x, y).numpy())) self.assertTrue( np.array_equal( x.logical_not(y).numpy(), paddle.logical_not(x, y).numpy())) self.assertTrue( np.array_equal( x.logical_or(y).numpy(), paddle.logical_or(x, y).numpy())) self.assertTrue( np.array_equal( x.logical_xor(y).numpy(), paddle.logical_xor(x, y).numpy())) self.assertTrue( np.array_equal( x.logical_and(y).numpy(), paddle.logical_and(x, y).numpy()))