Ejemplo n.º 1
0
 def init_op(self):
     self.seq = Sequential([
         Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
         Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225],
                             True)
     ])
     self.label_dict = {}
     label_idx = 0
     with open("imagenet.label") as fin:
         for line in fin:
             self.label_dict[label_idx] = line.strip()
             label_idx += 1
Ejemplo n.º 2
0
def single_func(idx, resource):
    total_number = 0
    profile_flags = False
    latency_flags = False
    if os.getenv("FLAGS_profile_client"):
        profile_flags = True
    if os.getenv("FLAGS_serving_latency"):
        latency_flags = True
        latency_list = []

    if args.request == "rpc":
        client = Client()
        client.load_client_config(args.model)
        client.connect([resource["endpoint"][idx % len(resource["endpoint"])]])
        start = time.time()
        for i in range(turns):
            if args.batch_size >= 1:
                l_start = time.time()
                seq = Sequential([
                    File2Image(),
                    Resize(256),
                    CenterCrop(224),
                    RGB2BGR(),
                    Transpose((2, 0, 1)),
                    Div(255),
                    Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225],
                              True)
                ])
                image_file = "daisy.jpg"
                img = seq(image_file)
                feed_data = np.array(img)
                feed_data = np.expand_dims(feed_data,
                                           0).repeat(args.batch_size, axis=0)
                result = client.predict(
                    feed={"image": feed_data},
                    fetch=["save_infer_model/scale_0.tmp_0"],
                    batch=True)
                l_end = time.time()
                if latency_flags:
                    latency_list.append(l_end * 1000 - l_start * 1000)
                total_number = total_number + 1
            else:
                print("unsupport batch size {}".format(args.batch_size))

    else:
        raise ValueError("not implemented {} request".format(args.request))
    end = time.time()
    if latency_flags:
        return [[end - start], latency_list, [total_number]]
    else:
        return [[end - start]]
Ejemplo n.º 3
0
def run(args):
    client = Client()
    client.load_client_config(
        os.path.join(args.serving_client_path, "serving_client_conf.prototxt"))
    client.connect([args.serving_ip_port])

    seq = Sequential([
        File2Image(),
        RGB2BGR(),
        Div(255),
        Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5], False),
        Transpose((2, 0, 1))
    ])

    img = seq(args.image_path)
    fetch_map = client.predict(
        feed={"x": img}, fetch=["save_infer_model/scale_0.tmp_1"])

    result = fetch_map["save_infer_model/scale_0.tmp_1"]
    color_img = get_pseudo_color_map(result[0])
    color_img.save("./result.png")
    print("The segmentation image is saved in ./result.png")
Ejemplo n.º 4
0
'''
#client.set_http_proto(True)
client.connect(["127.0.0.1:9696"])

label_dict = {}
label_idx = 0
with open("imagenet.label") as fin:
    for line in fin:
        label_dict[label_idx] = line.strip()
        label_idx += 1

seq = Sequential([
    URL2Image(),
    Resize(256),
    CenterCrop(224),
    RGB2BGR(),
    Transpose((2, 0, 1)),
    Div(255),
    Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True)
])

start = time.time()
image_file = "https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg"
for i in range(10):
    img = seq(image_file)
    fetch_map = client.predict(feed={"image": img},
                               fetch=["score"],
                               batch=False)
    print(fetch_map)

end = time.time()
Ejemplo n.º 5
0
from paddle_serving_app.reader import CenterCrop, RGB2BGR, Transpose, Div, Normalize
import time

client = Client()
client.load_client_config(sys.argv[1])
client.connect(["127.0.0.1:9696"])

label_dict = {}
label_idx = 0
with open("imagenet.label") as fin:
    for line in fin:
        label_dict[label_idx] = line.strip()
        label_idx += 1

seq = Sequential([
    URL2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
    Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True)
])

start = time.time()
image_file = "https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg"
for i in range(10):
    img = seq(image_file)
    fetch_map = client.predict(
        feed={"image": img}, fetch=["score"], batch=False)
    prob = max(fetch_map["score"][0])
    label = label_dict[fetch_map["score"][0].tolist().index(prob)].strip(
    ).replace(",", "")
    print("prediction: {}, probability: {}".format(label, prob))

end = time.time()