Ejemplo n.º 1
0
def main():
    palette.configure(False)
    
    d_indiv, n_indiv = np.loadtxt("indiv_dx_min.txt").T
    d_global, n_global = np.loadtxt("global_dx_min.txt").T
    d_rot_global, n_rot_global = np.loadtxt("global_rotation.txt").T
    d_window_indiv, n_window_indiv = np.loadtxt("rotate_window_indiv.txt").T
    d_mean_indiv, n_mean_indiv = np.loadtxt("rotate_mean_indiv.txt").T
    d_mode_indiv, n_mode_indiv = np.loadtxt("rotate_mode_indiv.txt").T
    
    plt.plot(d_indiv, n_indiv, color=pc("k"),
             label=r"${\rm individual\ (\Delta x)_{\rm min}}$")
    plt.plot(d_global, n_global, color=pc("r"),
             label=r"${\rm global\ (\Delta x)_{\rm min}}$")
    plt.plot(d_rot_global, n_rot_global, color=pc("o"),
             label=r"${\rm global\ rotation}$")
    plt.plot(d_rot_global - 2**16, n_rot_global, color=pc("o"))
    plt.plot(d_window_indiv, n_window_indiv, color=pc("g"),
             label=r"${\rm individual\ rotation\ (window)}$")
    plt.plot(d_window_indiv - 2**16, n_window_indiv, color=pc("g"))
    plt.plot(d_mean_indiv, n_mean_indiv, color=pc("b"),
             label=r"${\rm individual\ rotation\ (mean)}$")
    plt.plot(d_mean_indiv - 2**16, n_mean_indiv, color=pc("b"))
    plt.plot(d_mode_indiv, n_mode_indiv, color=pc("p"),
             label=r"${\rm individual\ rotation\ (mode)}$")
    plt.plot(d_mode_indiv - 2**16, n_mode_indiv, color=pc("p"))

    
    
    plt.legend(loc="upper left", frameon=True, fontsize=16)
    
    xlo, xhi = plt.xlim(-400, 2000)
    ylo, yhi = plt.ylim()
    plt.ylim(ylo, yhi)
    
    plt.xlabel(r"$\Delta x$")
    plt.ylabel(r"$N(\Delta x)$")
    
    n = -512
    while n < xhi:
        plt.plot([n, n], [ylo, yhi], ":", lw=1, c="k")
        n += 256
    
    plt.show()
Ejemplo n.º 2
0
def plot_dev(i_acc):
    ratios = np.zeros((6, 7*7*7))
    acc = acc_strs[i_acc]

    plt.figure(i_acc)
    
    for i_snap, snap in enumerate(snaps):
        color = colors[i_snap]
        sizes = np.loadtxt(target % (acc, snap), usecols=(0,))
        names = np.loadtxt(target % (acc, snap), usecols=(1,), dtype=str)
        sizes = np.reshape(sizes, (8, 8, 8))
        names = np.reshape(names, (8, 8, 8))

        mean_size = np.mean(sizes)
        
        block_sizes = ratios[i_snap, :]
        i = 0

        for ox in range(7):
            for oy in range(7):
                for oz in range(7):
                    block = sizes[ox:ox+2, oy:oy+2, oz:oz+2]
                    block_sizes[i] = np.mean(block)
                    i += 1

        block_sizes /= mean_size
        plt.plot(block_sizes, c=color, lw=1.5)
    
    x_low, x_high = plt.xlim()
    plt.xlim(x_low, x_high)

    dev = np.sqrt(np.sum((ratios-1)**2, axis=0)/6)
    
    plt.plot([x_low, x_high], [1, 1], "--", lw=2, c="k")
    
    plt.figure(4)

    color = [pc("r"), pc("o"), pc("b")][i_acc]
    
    plt.plot(dev, c=color, lw=1.5)
    plt.yscale("log")
Ejemplo n.º 3
0
def main():
    palette.configure(True)

    file_names = [
        "profiles/phi_pts/phi_pts_4_1.25.txt",
        "profiles/phi_pts/phi_pts_4_2.5.txt",
        "profiles/phi_pts/phi_pts_4_5.txt",
        "profiles/phi_pts/phi_pts_4_10.txt",
        "profiles/phi_pts/phi_pts_4_20.txt"
    ]

    log_r, phi = np.loadtxt(file_names[0]).T
    log_r_2, phi_2 = np.loadtxt(file_names[-1]).T

    mvir = 5.112e+09
    vvir = mvir_to_vvir(mvir)
    rvir = mvir_to_rvir(mvir)

    log_r -= np.log10(rvir)
    log_r_2 -= np.log10(rvir)

    phi /= vvir**2
    phi_2 /= vvir**2

    plt.plot([-12, 5], [-12, 5], "--", lw=2, c=pc("a"))
    plt.plot(phi, phi_2, ".", c="k")

    plt.xlim(-12, 5)
    plt.ylim(-12, 5)

    plt.xlabel(r"$\Phi_{\rm true}/V_{\rm vir}^2$")
    plt.ylabel(r"$\Phi(\delta_v = 0.8 V_{\rm vir})/V_{\rm vir}^2$")

    plt.fill_between([0, 5], [0, 0], [-12, -12], color=pc("b"), alpha=0.2)
    plt.fill_between([-12, 0], [5, 5], [0, 0], color=pc("r"), alpha=0.2)

    plt.savefig("plots/fig4_vvir_boundedness.png")
Ejemplo n.º 4
0
def plot_subhaloes(mpeak, limit, rvir, vec):
    """ plot_subhaloes plots all subhaloes with mpeak > limit. Subhaloes are
    plotted as circles with radius rvir with their positions relative to the
    halo center. Only the (x, y) projection is plotted.
    """
    ok = mpeak > limit   #
    mpeak, rvir, vec = mpeak[ok], rvir[ok], vec[ok]

    for i in range(len(mpeak)):
        if i == 0:
            c, lw = "k", 3    # color and linewidth
        else:
            c, lw = pc(), 2
        dx, dy = vec[i, 0] - vec[0, 0], vec[i, 1] - vec[0, 1],
        plot_circle(dx, dy, rvir[i], c, lw=lw)

    # Leave a small buffer around each halo.
    spacing = 1.2
    plt.xlim(-rvir[0] * spacing, +rvir[0] * spacing)
    plt.ylim(-rvir[0] * spacing, +rvir[0] * spacing)

    plt.xlabel(r"$X\,(h^{-1}{\rm Mpc})$")
    plt.ylabel(r"$Y\,(h^{-1}{\rm Mpc})$")
Ejemplo n.º 5
0
palette.configure()


def gaussian(mu, sigma, x):
    return np.exp(-(x - mu)**2 /
                  (2 * sigma**2)) / np.sqrt(2 * np.pi * sigma**2)


x = np.linspace(0, 1, 100)

for c in palette.colors[:0:-1]:
    plt.figure()

    for sigma in np.linspace(0.2, 1.0, 10):
        plt.plot(x, gaussian(sigma, sigma, x), ls, lw=lw, c=pc(c, sigma))

    if c == "red":
        plt.savefig("README_images/color_range.png")

plt.figure()

x = np.linspace(-1, 1, 100)
plt.plot(x, gaussian(0, 0.5, x), ls, c=pc(), lw=lw)
plt.plot(x, gaussian(0.5, 0.5, x), ls, c=pc(), lw=lw)
plt.plot(x, gaussian(0.25, 0.4, x), ls, c=pc(), lw=lw)
plt.plot(x, gaussian(-0.3, 0.6, x), ls, c=pc(), lw=lw)
plt.plot(x, gaussian(-0.5, 0.3, x), ls, c=pc(), lw=lw)
plt.plot(x, gaussian(-0.75, 1.0, x), ls, c=pc(), lw=lw)
plt.plot(x, gaussian(0.75, 0.75, x), ls, c=pc(), lw=lw)
plt.plot(x, gaussian(0.1, 0.35, x), ls, c=pc(), lw=lw)
Ejemplo n.º 6
0
def main():
    snap_to_z, snap_to_a = snap_lookup_tables("profiles/redshifts.txt")

    L, sim_name = Ls[0], sim_names[0]
    dx_means = [0] * len(accuracies[0])
    dv_means = [0] * len(accuracies[0])

    spacing = L / 1024

    for i, acc in enumerate(accuracies[0]):
        str_acc = str(acc)
        dx_file_name = "profiles/sizes/%s/dx_%s.txt" % (sim_name, str_acc)
        dv_file_name = "profiles/sizes/%s/dv_%s.txt" % (sim_name, str_acc)

        snap = np.arange(101)
        snap = snap[snap != 63]

        dx_size = np.loadtxt(dx_file_name, usecols=(0, ))[:-1]
        dv_size = np.loadtxt(dv_file_name, usecols=(0, ))[:-1]
        dx_size = dx_size[dx_size != 0]
        dv_size = dv_size[dv_size != 0]

        exp_small = 1024**3 * (4 + 12) / 4**3 / 2**10
        exp_large = 1024**3 * (4 + 12) / 2**10

        dx_ratio = np.zeros(len(dx_size))
        dx_ratio[:-1] = dx_size[:-1] / exp_small
        dx_ratio[-1] = dx_size[-1] / exp_large

        dv_ratio = np.zeros(len(dv_size))
        dv_ratio[:-1] = dv_size[:-1] / exp_small
        dv_ratio[-1] = dv_size[-1] / exp_large

        dx_means[i], dv_means[i] = np.mean(dx_ratio), np.mean(dv_ratio)

        if i == 1:
            plt.plot(snap_to_a[snap],
                     dx_ratio,
                     c=pc("r"),
                     label=r"$\delta x = %.3f\,l$" % (acc / spacing / 1e3))
            plt.plot([1 / 21, 1], [dx_means[i], dx_means[i]],
                     "--",
                     lw=2,
                     c=pc("r"))
        if i == 3:
            plt.plot(snap_to_a[snap],
                     dv_ratio,
                     c=pc("b"),
                     label=r"$\delta v = %s\,{\rm km\,s^{-1}}$" % str_acc)
            plt.plot([1 / 21, 1], [dx_means[i], dx_means[i]],
                     "--",
                     lw=2,
                     c=pc("b"))

    plt.legend(loc="upper left", fontsize=16)
    plt.xscale("log")
    plt.ylabel(r"${\rm Compression\ ratio}$")
    plt.xlabel(r"$a(z)$")
    plt.xlim(1 / 21, 1)

    plt.savefig("plots/fig_2a_ratio_vs_a.png")

    plt.figure()

    acc = np.array(accuracies[0])

    plt.plot(np.log10(acc), dv_means, c=pc("b"), label=r"$\vec{v}$")
    plt.plot(np.log10(acc), dv_means, "o", c=pc("b"))
    plt.xlabel(r"$\log_{10}(\delta v)\ ({\rm km\,s^{-1}})$", color=pc("b"))
    plt.ylabel(r"${\rm Compression\ ratio}$")
    plt.tick_params(axis="x", colors=pc("b"))

    plt.twiny()

    plt.plot(np.log10(acc / spacing / 1e3),
             dx_means,
             c=pc("r"),
             label=r"$\vec{x}$")
    plt.plot(np.log10(acc / spacing / 1e3), dx_means, "o", c=pc("r"))
    plt.xlabel(r"$\log_{10}(\delta x / l)$", color=pc("r"))
    plt.ylabel(r"${\rm Compression\ ratio}$")
    plt.tick_params(axis="x", colors=pc("r"))

    plt.savefig("plots/fig_2b_ratio_vs_accuracy.png")
Ejemplo n.º 7
0
import numpy as np
import matplotlib.pyplot as plt
import palette
from palette import pc

sim_names = ["Erebos_CBol_L63"]
accuracies = [[1.25, 2.5, 5, 10, 20]]
Ls = [62.5]

colors = [pc("r"), pc("o"), pc("g"), pc("b"), pc("p")]


def snap_lookup_tables(file_name):
    snap, z, a = np.loadtxt(file_name).T
    z[63] = 10**((np.log10(z[62]) + np.log10(z[64])) / 2)
    a[63] = 10**((np.log10(a[62]) + np.log10(a[64])) / 2)
    return z, a


def main():
    snap_to_z, snap_to_a = snap_lookup_tables("profiles/redshifts.txt")

    L, sim_name = Ls[0], sim_names[0]
    dx_means = [0] * len(accuracies[0])
    dv_means = [0] * len(accuracies[0])

    spacing = L / 1024

    for i, acc in enumerate(accuracies[0]):
        str_acc = str(acc)
        dx_file_name = "profiles/sizes/%s/dx_%s.txt" % (sim_name, str_acc)