def test_upsert_individual_values1(pandabase_loaded_db, constants): """upsert to update rows with only 1 of 5 values (and index) from full dataframe""" assert pb.has_table(pandabase_loaded_db, constants.TABLE_NAME) df = pb.read_sql(constants.TABLE_NAME, con=pandabase_loaded_db) df2 = pd.DataFrame(index=df.index, columns=df.columns) for col in df2.columns: df2[col] = df2[col].astype(df[col].dtype) df2.loc[df2.index[0], 'float'] = 9.9 df2.loc[df2.index[1], 'integer'] = 999 df2.loc[df2.index[2], 'string'] = 'nah' df2.loc[df2.index[3], 'date'] = pd.to_datetime('1968-01-01', utc=True) pb.to_sql(df2, table_name=constants.TABLE_NAME, con=pandabase_loaded_db, how='upsert') # check against pandabase read loaded = pb.read_sql(constants.TABLE_NAME, con=pandabase_loaded_db) df.loc[df.index[0], 'float'] = 9.9 df.loc[df.index[1], 'integer'] = 999 df.loc[df.index[2], 'string'] = 'nah' df.loc[df.index[3], 'date'] = pd.to_datetime('1968-01-01', utc=True) assert companda(df, loaded)
def test_create_select_table_range_datetime_index(empty_db, simple_df, constants): """add a new table with explicit index, read it back with pandabase, check equality""" simple_df.index = simple_df.date simple_df = simple_df.drop('date', axis=1) table = pb.to_sql(simple_df, table_name='sample', con=empty_db, how='create_only') # print(table.columns) assert table.columns['date'].primary_key assert pb.has_table(empty_db, 'sample') loaded0 = pb.read_sql('sample', con=empty_db, lowest=simple_df.index[-1], highest=simple_df.index[0]) print(loaded0) assert len(loaded0) == 0 loaded = pb.read_sql('sample', con=empty_db, lowest=simple_df.index[0], highest=simple_df.index[-1]) assert pb.companda(loaded, simple_df, ignore_all_nan_columns=True)
def test_upsert_individual_values2(pandabase_loaded_db, constants): """upsert to update rows with only 1 of 5 values (and index) from incomplete DataFrame""" assert pb.has_table(pandabase_loaded_db, constants.TABLE_NAME) df = pb.read_sql(constants.TABLE_NAME, con=pandabase_loaded_db) df2 = pd.DataFrame(index=df.index, columns=df.columns) for col in df2.columns: df2[col] = df2[col].astype(df[col].dtype) df2.loc[df2.index[0], 'float'] = 9.9 df2.loc[df2.index[3], 'date'] = pd.to_datetime('1968-01-01', utc=True) pb.to_sql(pd.DataFrame(index=df2.index[:1], columns=['float'], data=[9.9]), table_name=constants.TABLE_NAME, con=pandabase_loaded_db, how='upsert') pb.to_sql(pd.DataFrame(index=df2.index[3:4], columns=['date'], data=[pd.to_datetime('1968-01-01', utc=True)]), table_name=constants.TABLE_NAME, con=pandabase_loaded_db, how='upsert') # check against pandabase read loaded = pb.read_sql(constants.TABLE_NAME, con=pandabase_loaded_db) df.loc[df.index[0], 'float'] = 9.9 df.loc[df.index[3], 'date'] = pd.to_datetime('1968-01-01', utc=True) assert companda(df, loaded)
def test_select_fails_multi_index(empty_db, multi_index_df, lowest): """add a new minimal table & read it back with pandabase - select all""" pb.to_sql(multi_index_df, table_name='sample_mi', con=empty_db, how='create_only', ) with pytest.raises(Exception): pb.read_sql(con=empty_db, table_name='sample_mi', highest=(1000, 1000), lowest=lowest)
def test_auto_index_add_valid_bool(minimal_df, empty_db, constants): pb.to_sql( minimal_df, table_name=constants.TABLE_NAME, con=empty_db, how='create_only', auto_index=True, ) assert pb.has_table(empty_db, constants.TABLE_NAME) df = pd.DataFrame(index=[101, 102, 103], columns=['boolean'], data=[True, False, None]) pb.to_sql( df, table_name=constants.TABLE_NAME, con=empty_db, how='append', auto_index=True, ) df = pb.read_sql(constants.TABLE_NAME, con=empty_db) # Int64Dtype is a fine way to store nullable boolean values # Stored in database as boolean or NULL so the data can only be 0, 1, or None assert is_bool_dtype(df.boolean) or is_integer_dtype(df.boolean) # assume values were loaded in order: x = len(df) assert df.loc[x - 2, 'boolean'] assert not df.loc[x - 1, 'boolean'] assert pd.np.isnan(df.loc[x, 'boolean']) with pytest.raises(KeyError): _ = df.loc[x + 1, 'boolean']
def test_upsert_new_cols(pandabase_loaded_db, constants, col_to_duplicate): """upsert new rows with only 1 of 5 values (and index)""" assert pb.has_table(pandabase_loaded_db, constants.TABLE_NAME) df = pb.read_sql(constants.TABLE_NAME, con=pandabase_loaded_db) df['bonus_col'] = df[col_to_duplicate].copy() pb.to_sql(df, table_name=constants.TABLE_NAME, con=pandabase_loaded_db, how='upsert', add_new_columns=True) # check against pandabase read loaded = pb.read_sql(constants.TABLE_NAME, con=pandabase_loaded_db) assert companda(df, loaded) assert 'bonus_col' in df.columns
def test_select_table_range_fails_different_index(empty_db, simple_df, constants): """add a new table with explicit index, read it back with pandabase, check equality""" simple_df.index = simple_df.date simple_df = simple_df.drop('date', axis=1) pb.to_sql(simple_df, table_name='sample', con=empty_db, how='create_only') with pytest.raises(Exception): _ = pb.read_sql('sample', con=empty_db, lowest=0, highest=12)
def test_create_table_multi_index(empty_db, multi_index_df_4, how): """add a new minimal table & read it back with pandabase""" table = pb.to_sql(multi_index_df_4, table_name='sample_mi', con=empty_db, how=how, ) loaded = pb.read_sql(con=empty_db, table_name='sample_mi') assert companda(multi_index_df_4, loaded)
def test_select_some_multi_index(empty_db, multi_index_df, lowest, length): """add a new minimal table & read it back with pandabase - select all""" table = pb.to_sql(multi_index_df, table_name='sample_mi', con=empty_db, how='create_only', ) loaded = pb.read_sql(con=empty_db, table_name='sample_mi', highest=(1000, 1000), lowest=lowest) print('\n', loaded) assert len(loaded) == length
def test_upsert_complete_rows(pandabase_loaded_db, constants): """upsert, changing individual values""" assert pb.has_table(pandabase_loaded_db, constants.TABLE_NAME) df = pb.read_sql(constants.TABLE_NAME, con=pandabase_loaded_db) assert df.date.dt.tz == UTC df.loc[778, 'float'] = 9.9 df.loc[779, 'integer'] = 999 df.loc[780, 'string'] = 'nah' df.loc[781, 'date'] = pd.to_datetime('1968-01-01', utc=True) # check that all values still exist assert df.loc[1, 'integer'] == 778 assert df.date.dt.tz == UTC pb.to_sql(df, table_name=constants.TABLE_NAME, con=pandabase_loaded_db, how='upsert') loaded = pb.read_sql(constants.TABLE_NAME, con=pandabase_loaded_db) assert companda(df, loaded)
def test_create_select_table_index(session_db, simple_df, constants): """add a new table with explicit index, read it back with pandabase, check equality""" table = pb.to_sql(simple_df, table_name='sample', con=session_db, how='create_only') # print(table.columns) assert table.columns[constants.SAMPLE_INDEX_NAME].primary_key assert pb.has_table(session_db, 'sample') loaded = pb.read_sql('sample', con=session_db) assert pb.companda(loaded, simple_df, ignore_all_nan_columns=True)
def test_upsert_incomplete_rows(pandabase_loaded_db, constants): """upsert new rows with only 1 of 5 values (and index)""" assert pb.has_table(pandabase_loaded_db, constants.TABLE_NAME) df = pb.read_sql(constants.TABLE_NAME, con=pandabase_loaded_db) df.loc[11, 'float'] = 9.9 df.loc[12, 'integer'] = 999 df.loc[13, 'string'] = 'nah' df.loc[14, 'date'] = pd.to_datetime('1968-01-01', utc=True) # check that these values exist assert df.loc[1, 'integer'] == 778 assert pd.isna(df.loc[11, 'integer']) assert df.loc[13, 'string'] == 'nah' pb.to_sql(df, table_name=constants.TABLE_NAME, con=pandabase_loaded_db, how='upsert') # check against pandabase read loaded = pb.read_sql(constants.TABLE_NAME, con=pandabase_loaded_db) assert companda(df, loaded)
def test_create_read_table_no_index(empty_db, minimal_df): """add a new minimal table & read it back with pandabase""" table = pb.to_sql(minimal_df, table_name='sample', con=empty_db, how='create_only', auto_index=True, ) # print(table.columns) assert table.columns[PANDABASE_DEFAULT_INDEX].primary_key loaded = pb.read_sql('sample', con=empty_db) assert pb.has_table(empty_db, 'sample') assert pb.companda(loaded, minimal_df, ignore_index=True)
def test_add_column_to_database(pandabase_loaded_db, actually_do, constants): """possibly add new column to db""" name = 'a_new_column' col = sqa.Column(name, primary_key=False, type_=Integer, nullable=True) if actually_do: pb.add_columns_to_db(col, table_name=constants.TABLE_NAME, con=pandabase_loaded_db) df = pb.read_sql(table_name=constants.TABLE_NAME, con=pandabase_loaded_db) if actually_do: assert name in df.columns assert is_integer_dtype(df[name]) else: assert name not in df.columns
def test_select_all_multi_index(empty_db, multi_index_df): """add a new minimal table & read it back with pandabase - select all""" table = pb.to_sql(multi_index_df, table_name='sample_mi', con=empty_db, how='create_only', ) # print(table.columns) assert table.columns['this'].primary_key assert table.columns['that'].primary_key loaded = pb.read_sql(con=empty_db, table_name='sample_mi', highest=(100, 100), lowest=(0, 0)) print('\n', loaded) assert companda(multi_index_df, loaded)
def test_create_table_multi_index(empty_db, multi_index_df, how): """add a new minimal table & read it back with pandabase""" table = pb.to_sql(multi_index_df, table_name='sample_mi', con=empty_db, how=how, ) # print(table.columns) assert table.columns['this'].primary_key assert table.columns['that'].primary_key loaded = pb.read_sql(con=empty_db, table_name='sample_mi') print('\n', loaded) assert companda(multi_index_df, loaded)
def test_coerce_integer(pandabase_loaded_db, how, constants): """insert an integer into float column""" assert pb.has_table(pandabase_loaded_db, constants.TABLE_NAME) df = pd.DataFrame(index=[1], columns=['integer'], data=[[77.0]]) df.index.name = constants.SAMPLE_INDEX_NAME types = df.dtypes pb.to_sql(df, table_name=constants.TABLE_NAME, con=pandabase_loaded_db, how='upsert') for col in df.columns: assert types[col] == df.dtypes[col] loaded = pb.read_sql(constants.TABLE_NAME, con=pandabase_loaded_db) assert loaded.loc[1, 'integer'] == 77
def test_add_new_rows(pandabase_loaded_db, simple_df, how, constants): """upsert or append new complete rows""" assert pb.has_table(pandabase_loaded_db, constants.TABLE_NAME) df = simple_df.copy() df.index = df.index + 100 pb.to_sql(df, table_name=constants.TABLE_NAME, con=pandabase_loaded_db, how=how) loaded = pb.read_sql(constants.TABLE_NAME, con=pandabase_loaded_db) # print('loaded post-upsert by pandabase:') # print(loaded) assert loaded.isna().sum().sum() == 0 assert companda(simple_df, loaded.loc[simple_df.index]) assert companda(df, loaded.loc[df.index])
def test_create_read_table_with_different_index(session_db, simple_df, table_name, index_col_name): """create new tables in empty db, using different col types as index, read with pandabase""" orig_df = simple_df.copy() orig_df.index = orig_df[index_col_name] print(orig_df[index_col_name]) print(orig_df.index) orig_df = orig_df.drop(index_col_name, axis=1) table = pb.to_sql(orig_df, table_name=table_name, con=session_db, how='create_only') assert table.columns[index_col_name].primary_key assert pb.has_table(session_db, table_name) loaded = pb.read_sql(table_name, con=session_db) c = pb.companda(loaded, orig_df, ignore_all_nan_columns=True) if not c: raise ValueError(c.message)
def test_append_auto_index(empty_db, minimal_df): """add a new minimal table; add it again""" pb.to_sql(minimal_df, table_name='sample', con=empty_db, auto_index=True, how='create_only') table2 = pb.to_sql(minimal_df, table_name='sample', con=empty_db, auto_index=True, how='append') assert table2.columns[PANDABASE_DEFAULT_INDEX].primary_key loaded = pb.read_sql('sample', con=empty_db) assert pb.has_table(empty_db, 'sample') double_df = pd.concat([minimal_df, minimal_df], ignore_index=True) assert pb.companda(loaded, double_df, ignore_index=True) assert len(loaded) == len(minimal_df) * 2
def test_coerce_float_to_integer_multi(multi_index_df, empty_db, constants): """insert a float into integer column""" mi = multi_index_df.copy().index assert mi.names[0] is not None assert mi.names[1] is not None pb.to_sql(multi_index_df, con=empty_db, table_name=constants.TABLE_NAME) df = pd.DataFrame(columns=['integer'], data=[[77.0]], index=mi[:1]) assert df.index.names[0] is not None assert df.index.names[1] is not None print('\n', df) print() types = df.dtypes pb.to_sql(df, table_name=constants.TABLE_NAME, con=empty_db, how='upsert') for col in df.columns: assert types[col] == df.dtypes[col] loaded = pb.read_sql(constants.TABLE_NAME, con=empty_db) assert loaded.loc[mi[0], 'integer'] == 77
def test_select_pandas_table(pandas_loaded_db, simple_df, constants): """using pandabase.read_sql: read pandas-written table containing simple_df, this test fails because: when pandas writes the entry, it does not create an explicit primary key. the table is treated as a multiindex""" assert has_table(pandas_loaded_db, constants.TABLE_NAME) df = pb.read_sql(constants.TABLE_NAME, pandas_loaded_db) # line up pk since Pandas doesn't deal with it well simple_df[simple_df.index.name] = simple_df.index simple_df.index.name = None orig_columns = make_clean_columns_dict(simple_df) loaded_columns = make_clean_columns_dict(df) for key in orig_columns.keys(): print(key) if key == 'nan': continue assert_sqla_types_equivalent(orig_columns[key], loaded_columns[key]) assert companda(df, simple_df)
def test_upsert_valid_bool(pandabase_loaded_db, how, constants): assert pb.has_table(pandabase_loaded_db, constants.TABLE_NAME) df = pd.DataFrame(index=[101, 102, 103], columns=['boolean'], data=[True, False, None]) df.index.name = constants.SAMPLE_INDEX_NAME pb.to_sql(df, table_name=constants.TABLE_NAME, con=pandabase_loaded_db, how=how) df = pb.read_sql(constants.TABLE_NAME, con=pandabase_loaded_db) # Int64Dtype is a fine way to store nullable boolean values # Stored in database as boolean or NULL so the data can only be 0, 1, or None assert is_bool_dtype(df.boolean) or is_integer_dtype(df.boolean) assert df.loc[101, 'boolean'] assert not df.loc[102, 'boolean'] assert pd.np.isnan(df.loc[103, 'boolean']) with pytest.raises(KeyError): _ = df.loc[104, 'boolean']