Ejemplo n.º 1
0
	def init_node_path(self):
		if self.node_path:
			self.node_path.remove()
		vdata = GeomVertexData('name_me', self.format, Geom.UHStatic)
		vertex = GeomVertexWriter(vdata, 'vertex')
		color = GeomVertexWriter(vdata, 'color')
		primitive = GeomTristrips(Geom.UHStatic)
		film_size = base.cam.node().getLens().getFilmSize()
		x = film_size.getX() / 2.0
		z = x * 0.75
		vertex.addData3f(-x, 10000, z)
		vertex.addData3f(x, 10000, z)
		vertex.addData3f(-x, 10000, -z)
		vertex.addData3f(x, 10000, -z)
		color.addData4f(*[x / 255.0 for x in self.color1] + [1.0])
		color.addData4f(*[x / 255.0 for x in self.color1] + [1.0])
		color.addData4f(*[x / 255.0 for x in self.color2] + [1.0])
		color.addData4f(*[x / 255.0 for x in self.color2] + [1.0])
		primitive.addNextVertices(4)
		primitive.closePrimitive()
		geom = Geom(vdata)
		geom.addPrimitive(primitive)
		node = GeomNode('gnode')
		node.addGeom(geom)
		self.node_path = base.camera.attachNewNode(node)
Ejemplo n.º 2
0
 def draw(self):
     format=GeomVertexFormat.getV3n3cpt2()
     vdata=GeomVertexData('square', format, Geom.UHDynamic)
     vertex=GeomVertexWriter(vdata, 'vertex')
     normal=GeomVertexWriter(vdata, 'normal')
     color=GeomVertexWriter(vdata, 'color')
     circle=Geom(vdata)
     # Create vertices
     vertex.addData3f(self.pos)
     color.addData4f(self.color)
     for v in range(self._EDGES):
         x = self.pos.getX() + (self.size * math.cos((2*math.pi/self._EDGES)*v))
         y = self.pos.getY() + (self.size * math.sin((2*math.pi/self._EDGES)*v))
         z = self.pos.getZ()
         vertex.addData3f(x, y, z)
         color.addData4f(self.color)
     
     # Create triangles
     for t in range(self._EDGES):
         tri = GeomTriangles(Geom.UHDynamic)
         tri.addVertex(0)
         tri.addVertex(t+1)
         if (t+2) > self._EDGES:
             tri.addVertex(1)
         else:
             tri.addVertex(t+2)
         tri.closePrimitive()
         circle.addPrimitive(tri)
     
     gn = GeomNode('Circle')
     gn.addGeom(circle)
     np = NodePath(gn)
     np.setHpr(0, 90, 0)
     return np
Ejemplo n.º 3
0
	def init_node_path_line(self, light_number):
		if self.node_path_line:
			self.node_path_line.remove()
		vdata = GeomVertexData('name_me', self.format, Geom.UHStatic)
		vertex = GeomVertexWriter(vdata, 'vertex')
		color = GeomVertexWriter(vdata, 'color')
		primitive = GeomLines(Geom.UHStatic)
		vertex.addData3f(*coords_to_panda(0, 0, 0))
		vertex.addData3f(*coords_to_panda(*self.direction.coords))
		if light_number == 0:
			line_color = (0.0, 1.0, 1.0, 1.0)
		elif light_number == 1:
			line_color = (1.0, 0.0, 1.0, 1.0)
		elif light_number == 2:
			line_color = (1.0, 1.0, 0.0, 1.0)
		color.addData4f(*line_color)
		color.addData4f(*line_color)
		primitive.addNextVertices(2)
		primitive.closePrimitive()
		geom = Geom(vdata)
		geom.addPrimitive(primitive)
		node = GeomNode('gnode')
		node.addGeom(geom)
		self.node_path_line = self.parent.node_path_ui.attachNewNode(node)
		self.node_path_line.setScale(1000)
		self.node_path_line.setPos(100, 100, 0)
		self.show_line(self.parent.parent.lights_edit_window.IsShown())
Ejemplo n.º 4
0
Archivo: Grid.py Proyecto: crempp/psg
	def drawSquare(self, x1,y1,z1, x2,y2,z2):
		format=GeomVertexFormat.getV3n3cpt2()
		vdata=GeomVertexData('square', format, Geom.UHStatic)
		
		vertex=GeomVertexWriter(vdata, 'vertex')
		normal=GeomVertexWriter(vdata, 'normal')
		color=GeomVertexWriter(vdata, 'color')
		texcoord=GeomVertexWriter(vdata, 'texcoord')
		
		#make sure we draw the sqaure in the right plane
		#if x1!=x2:
		vertex.addData3f(x1, y1, z1)
		vertex.addData3f(x2, y1, z1)
		vertex.addData3f(x2, y2, z2)
		vertex.addData3f(x1, y2, z2)

		normal.addData3f(self.myNormalize(Vec3(2*x1-1, 2*y1-1, 2*z1-1)))
		normal.addData3f(self.myNormalize(Vec3(2*x2-1, 2*y1-1, 2*z1-1)))
		normal.addData3f(self.myNormalize(Vec3(2*x2-1, 2*y2-1, 2*z2-1)))
		normal.addData3f(self.myNormalize(Vec3(2*x1-1, 2*y2-1, 2*z2-1)))
		
		#adding different colors to the vertex for visibility
		color.addData4f(0.0,0.5,0.0,0.5)
		color.addData4f(0.0,0.5,0.0,0.5)
		color.addData4f(0.0,0.5,0.0,0.5)
		color.addData4f(0.0,0.5,0.0,0.5)
		
		texcoord.addData2f(0.0, 1.0)
		texcoord.addData2f(0.0, 0.0)
		texcoord.addData2f(1.0, 0.0)
		texcoord.addData2f(1.0, 1.0)

		#quads arent directly supported by the Geom interface
		#you might be interested in the CardMaker class if you are
		#interested in rectangle though
		tri1=GeomTriangles(Geom.UHStatic)
		tri2=GeomTriangles(Geom.UHStatic)
		
		tri1.addVertex(0)
		tri1.addVertex(1)
		tri1.addVertex(3)
		
		tri2.addConsecutiveVertices(1,3)
		
		tri1.closePrimitive()
		tri2.closePrimitive()
		
		square=Geom(vdata)
		square.addPrimitive(tri1)
		square.addPrimitive(tri2)
		#square.setIntoCollideMask(BitMask32.bit(1))
		
		squareNP = NodePath(GeomNode('square gnode')) 
		squareNP.node().addGeom(square)
		squareNP.setTransparency(1) 
		squareNP.setAlphaScale(.5) 
		squareNP.setTwoSided(True)
		squareNP.setCollideMask(BitMask32.bit(1))
		return squareNP
Ejemplo n.º 5
0
    def _create_vertex_data(self):
        """Creates and fills the vertex data store."""
        format = GeomVertexFormat.getV3c4()
        vdata = GeomVertexData('cloud', format, Geom.UHDynamic)

        vertex = GeomVertexWriter(vdata, 'vertex')
        color = GeomVertexWriter(vdata, 'color')

        for point, value in self._points.iteritems():
            vertex.addData3f(point[0], point[1], value)
            color.addData4f(*self._color)

        self._vdata = vdata
Ejemplo n.º 6
0
    def _create_vertex_data(self):
        """Creates and fills the vertex data store."""
        format = GeomVertexFormat.getV3c4()
        vdata = GeomVertexData('cloud', format, Geom.UHDynamic)

        vertex = GeomVertexWriter(vdata, 'vertex')
        color = GeomVertexWriter(vdata, 'color')

        for index, point in enumerate(self._points):
            vertex.addData3f(*point[0:3])
            if self._colors != None:
                color.addData4f(*self._colors[index])
            else:
                color.addData4f(*self._color)

        self._vdata = vdata
Ejemplo n.º 7
0
	def init_node_path(self):
		if self.node_path:
			self.node_path.remove()
		vdata = GeomVertexData('name_me', self.format, Geom.UHStatic)
		vertex = GeomVertexWriter(vdata, 'vertex')
		color = GeomVertexWriter(vdata, 'color')
		primitive = GeomTristrips(Geom.UHStatic)
		vertex.addData3f(-2.0, -2.0, -2.0)
		vertex.addData3f(2.0, -2.0, -2.0)
		vertex.addData3f(0, 2.0, -2.0)
		vertex.addData3f(0, 0, 2.0)
		vertex.addData3f(-2.0, -2.0, -2.0)
		vertex.addData3f(0, 0, 2.0)
		vertex.addData3f(2.0, -2.0, -2.0)
		vertex.addData3f(0, 0, 2.0)
		vertex.addData3f(0, 2.0, -2.0)
		color_tuple = (1.0, 1.0, 1.0)
		if self.point == 'A':
			color_tuple = (1.0, 0.0, 0.0)
		elif self.point == 'B':
			color_tuple = (0.0, 1.0, 0.0)
		elif self.point == 'C':
			color_tuple = (0.0, 0.0, 1.0)
		elif self.point == 'D':
			color_tuple = (1.0, 1.0, 0.0)
		color.addData4f(*color_tuple + (1.0,))
		color.addData4f(*color_tuple + (1.0,))
		color.addData4f(*color_tuple + (1.0,))
		color.addData4f(*color_tuple + (1.0,))
		color.addData4f(*color_tuple + (1.0,))
		color.addData4f(*color_tuple + (1.0,))
		color.addData4f(*color_tuple + (1.0,))
		color.addData4f(*color_tuple + (1.0,))
		color.addData4f(*color_tuple + (1.0,))
		primitive.addNextVertices(9)
		primitive.closePrimitive()
		geom = Geom(vdata)
		geom.addPrimitive(primitive)
		node = GeomNode('gnode')
		node.addGeom(geom)
		self.node_path = self.parent.parent.node_path_ui.attachNewNode(node)
		self.node_path.setP(180)
		self.node_path.setPos(*coords_to_panda(*self.coords))
Ejemplo n.º 8
0
def makeCircle(vdata, numVertices=40,offset=Vec3(0,0,0), direction=1):
	circleGeom=Geom(vdata)

	vertWriter=GeomVertexWriter(vdata, "vertex")
	normalWriter=GeomVertexWriter(vdata, "normal")
	colorWriter=GeomVertexWriter(vdata, "color")
	uvWriter=GeomVertexWriter(vdata, "texcoord")
	drawWriter=GeomVertexWriter(vdata, "drawFlag")

	#make sure we start at the end of the GeomVertexData so we dont overwrite anything
	#that might be there already
	startRow=vdata.getNumRows()

	vertWriter.setRow(startRow)
	colorWriter.setRow(startRow)
	uvWriter.setRow(startRow)
	normalWriter.setRow(startRow)
	drawWriter.setRow(startRow)

	angle=2*math.pi/numVertices
	currAngle=angle

	for i in range(numVertices):
		position=Vec3(math.cos(currAngle)+offset.getX(), math.sin(currAngle)+offset.getY(),offset.getZ())
		vertWriter.addData3f(position)
		uvWriter.addData2f(position.getX()/2.0+0.5,position.getY()/2.0+0.5)
		colorWriter.addData4f(1.0, 1.0, 1.0, 1.0)
		position.setZ(position.getZ()*direction)
		position.normalize()
		normalWriter.addData3f(position)
		
		#at default Opengl only draws "front faces" (all shapes whose vertices are arranged CCW). We
		#need direction so we can specify which side we want to be the front face
		currAngle+=angle*direction

	circle=GeomTrifans(Geom.UHStatic)
	circle.addConsecutiveVertices(startRow, numVertices)
	circle.closePrimitive()

	circleGeom.addPrimitive(circle)
	
	return circleGeom
Ejemplo n.º 9
0
	def init_node_path(self):
		if self.node_path:
			self.node_path.remove()
		vdata = GeomVertexData('name_me', self.format, Geom.UHStatic)
		vertex = GeomVertexWriter(vdata, 'vertex')
		color = GeomVertexWriter(vdata, 'color')
		primitive = GeomLines(Geom.UHStatic)
		vertex.addData3f(*coords_to_panda(*self.vector))
		vertex.addData3f(*coords_to_panda(*[-x for x in self.vector]))
		color.addData4f((1.0, 0.0, 0.0, 1.0,))
		color.addData4f((0.0, 0.0, 1.0, 1.0,))
		primitive.addNextVertices(2)
		primitive.closePrimitive()
		geom = Geom(vdata)
		geom.addPrimitive(primitive)
		node = GeomNode('gnode')
		node.addGeom(geom)
		self.node_path = self.parent.parent.node_path_ui.attachNewNode(node)
		self.node_path.setScale(20)
		self.node_path.setPos(*coords_to_panda(*self.coords))
Ejemplo n.º 10
0
    def _create_vertex_data(self):
        """Creates and fills the vertex data store."""
        format = GeomVertexFormat.getV3n3cp()
        vdata = GeomVertexData("surface", format, Geom.UHDynamic)
        tri = GeomTriangles(Geom.UHDynamic)

        vertex = GeomVertexWriter(vdata, "vertex")
        normal = GeomVertexWriter(vdata, "normal")
        color = GeomVertexWriter(vdata, "color")

        for triangle in self._halfedge_mesh.faces:
            for v in triangle.iter_vertices():
                vertex.addData3f(*v.coordinates)
                normal.addData3f(*v.normal)
                color.addData4f(*self._color)
                tri.addNextVertices(1)

        self._vdata = vdata
        tri.closePrimitive()
        self._geom_primitives = [tri]
Ejemplo n.º 11
0
    def _create_vertex_data(self):
        """Creates and fills the vertex data store."""
        format = GeomVertexFormat.getV3n3cp()
        vdata = GeomVertexData('plane', format, Geom.UHDynamic)

        vertex = GeomVertexWriter(vdata, 'vertex')
        normal = GeomVertexWriter(vdata, 'normal')
        color = GeomVertexWriter(vdata, 'color')

        for x in xrange(self._width):
            for y in xrange(self._height):
                cur_index = x * self._height + y
                vertex.addData3f(*self._points[cur_index][0:3])
                if self._normals:
                    normal.addData3f(*self._normals[cur_index])
                else:
                    normal.addData3f(0, 0, 1)
                color.addData4f(*self._color)

        self._vdata = vdata
Ejemplo n.º 12
0
	def init_node_path(self):
		if self.node_path:
			self.node_path.remove()
		vdata = GeomVertexData('name_me', self.format, Geom.UHStatic)
		vertex = GeomVertexWriter(vdata, 'vertex')
		color = GeomVertexWriter(vdata, 'color')
		primitive = GeomLines(Geom.UHStatic)
		vertex.addData3f(*coords_to_panda(0, 0, 0))
		vertex.addData3f(*coords_to_panda(1000, 0, 0))
		vertex.addData3f(*coords_to_panda(0, 0, 0))
		vertex.addData3f(*coords_to_panda(0, -1000, 0))
		vertex.addData3f(*coords_to_panda(0, 0, 0))
		vertex.addData3f(*coords_to_panda(0, 0, 1000))
		color.addData4f(1.0, 0.0, 0.0, 1.0)
		color.addData4f(1.0, 0.0, 0.0, 1.0)
		color.addData4f(0.0, 1.0, 0.0, 1.0)
		color.addData4f(0.0, 1.0, 0.0, 1.0)
		color.addData4f(0.0, 0.0, 1.0, 1.0)
		color.addData4f(0.0, 0.0, 1.0, 1.0)
		primitive.addNextVertices(6)
		primitive.closePrimitive()
		geom = Geom(vdata)
		geom.addPrimitive(primitive)
		node = GeomNode('gnode')
		node.addGeom(geom)
		self.node_path = self.parent.node_path_ui.attachNewNode(node)
Ejemplo n.º 13
0
    def draw(self):
        format = GeomVertexFormat.getV3n3cpt2()
        vdata = GeomVertexData('square', format, Geom.UHDynamic)
        vertex = GeomVertexWriter(vdata, 'vertex')
        normal = GeomVertexWriter(vdata, 'normal')
        color = GeomVertexWriter(vdata, 'color')
        circle = Geom(vdata)
        # Create vertices
        vertex.addData3f(self.pos)
        color.addData4f(self.color)
        for v in range(self._EDGES):
            x = self.pos.getX() + (self.size * math.cos(
                (2 * math.pi / self._EDGES) * v))
            y = self.pos.getY() + (self.size * math.sin(
                (2 * math.pi / self._EDGES) * v))
            z = self.pos.getZ()
            vertex.addData3f(x, y, z)
            color.addData4f(self.color)

        # Create triangles
        for t in range(self._EDGES):
            tri = GeomTriangles(Geom.UHDynamic)
            tri.addVertex(0)
            tri.addVertex(t + 1)
            if (t + 2) > self._EDGES:
                tri.addVertex(1)
            else:
                tri.addVertex(t + 2)
            tri.closePrimitive()
            circle.addPrimitive(tri)

        gn = GeomNode('Circle')
        gn.addGeom(circle)
        np = NodePath(gn)
        np.setHpr(0, 90, 0)
        return np
Ejemplo n.º 14
0
def create_table_geom():
    format = GeomVertexFormat.getV3n3c4t2()
    # GeomVertexData. 
    vdata = GeomVertexData('table_vertex', format, Geom.UHStatic)
    
    vertex = GeomVertexWriter(vdata, 'vertex')
    normal = GeomVertexWriter(vdata, 'normal')
    color = GeomVertexWriter(vdata, 'color')
    texcoord = GeomVertexWriter(vdata, 'texcoord')

    vertex.addData3f(xmax, ymin, 0)
    normal.addData3f(0, 0, 1)
    color.addData4f(0, 0, 1, 1)
    texcoord.addData2f(1, 0)
    
    vertex.addData3f(xmax, ymax, 0)
    normal.addData3f(0, 0, 1)
    color.addData4f(0, 0, 1, 1)
    texcoord.addData2f(1, 1)
    
    vertex.addData3f(xmin, ymax, 0)
    normal.addData3f(0, 0, 1)
    color.addData4f(0, 0, 1, 1)
    texcoord.addData2f(0, 1)
    
    vertex.addData3f(xmin, ymin, 0)
    normal.addData3f(0, 0, 1)
    color.addData4f(0, 0, 1, 1)
    texcoord.addData2f(0, 0)
    
    prim = GeomTriangles(Geom.UHStatic)
    prim.addVertex(0)
    prim.addVertex(1)
    prim.addVertex(2)
    prim.closePrimitive()
    
    prim.addVertex(0)
    prim.addVertex(2)
    prim.addVertex(3)
    prim.closePrimitive()

    geom = Geom(vdata)
    geom.addPrimitive(prim)
    return geom
Ejemplo n.º 15
0
	def init_node_path(self):
		if self.node_path:
			self.node_path.remove()
		polygon = self.source
		vdata = GeomVertexData('name_me', self.format, Geom.UHStatic)
		vertex = GeomVertexWriter(vdata, 'vertex')
		normal = GeomVertexWriter(vdata, 'normal')
		color = GeomVertexWriter(vdata, 'color')
		texcoord = GeomVertexWriter(vdata, 'texcoord')
		primitive = GeomTristrips(Geom.UHStatic)
		vertex.addData3f(*coords_to_panda(*polygon.A.point.coords))
		vertex.addData3f(*coords_to_panda(*polygon.B.point.coords))
		vertex.addData3f(*coords_to_panda(*polygon.C.point.coords))
		if hasattr(polygon, 'D'):
			vertex.addData3f(*coords_to_panda(*polygon.D.point.coords))
		else:
			vertex.addData3f(*coords_to_panda(*polygon.C.point.coords))
		if polygon.A.normal:
			normal.addData3f(*coords_to_panda(*polygon.A.normal.coords))
			normal.addData3f(*coords_to_panda(*polygon.B.normal.coords))
			normal.addData3f(*coords_to_panda(*polygon.C.normal.coords))
			if hasattr(polygon, 'D'):
				normal.addData3f(*coords_to_panda(*polygon.D.normal.coords))
		if polygon.A.normal:
			gray = 1.0
		else:
			gray = 0.0
		self.old_color = (gray, gray, gray, 1.0)
		color.addData4f(gray, gray, gray, 1.0)
		color.addData4f(gray, gray, gray, 1.0)
		color.addData4f(gray, gray, gray, 1.0)
		if hasattr(polygon, 'D'):
			color.addData4f(gray, gray, gray, 1.0)
		if polygon.A.texcoord:
			pal = ((polygon.texture_palette + 1) * 256)
			
			texcoord_A = uv_to_panda2(polygon, pal, *polygon.A.texcoord.coords)
			texcoord_B = uv_to_panda2(polygon, pal, *polygon.B.texcoord.coords)
			texcoord_C = uv_to_panda2(polygon, pal, *polygon.C.texcoord.coords)
			texcoord.addData2f(*texcoord_A)
			texcoord.addData2f(*texcoord_B)
			texcoord.addData2f(*texcoord_C)
			if hasattr(polygon, 'D'):
				texcoord_D = uv_to_panda2(polygon, pal, *polygon.D.texcoord.coords)
				texcoord.addData2f(*texcoord_D)
		primitive.addNextVertices(4)
		primitive.closePrimitive()
		geom = Geom(vdata)
		geom.addPrimitive(primitive)
		node = GeomNode('gnode')
		node.addGeom(geom)
		self.node_path = self.parent.node_path_mesh.attachNewNode(node)
Ejemplo n.º 16
0
	def init_node_path(self):
		if self.node_path:
			self.node_path.remove()
		vdata = GeomVertexData('name_me', self.format, Geom.UHStatic)
		vertex = GeomVertexWriter(vdata, 'vertex')
		color = GeomVertexWriter(vdata, 'color')
		primitive = GeomTristrips(Geom.UHStatic)
		y = self.height * 12 + self.depth * 12 + 1
		try:
			(slope, rotation) = slope_types[self.slope_type]
		except KeyError:
			print 'Unknown slope type:', self.slope_type
			(slope, rotation) = (flat, 0)
		if self.slope_height == 0:
			(slope, rotation) = (flat, 0)
		scale_y = self.slope_height * 12
		vertex.addData3f(*coords_to_panda(-14.0, -slope['sw'] * scale_y, -14.0))
		vertex.addData3f(*coords_to_panda(-14.0, -slope['nw'] * scale_y, 14.0))
		vertex.addData3f(*coords_to_panda(14.0, -slope['ne'] * scale_y, 14.0))
		vertex.addData3f(*coords_to_panda(14.0, -slope['se'] * scale_y, -14.0))
		vertex.addData3f(*coords_to_panda(-14.0, -slope['sw'] * scale_y, -14.0))
		tile_color = (0.5, 0.5, 1.0)
		if self.cant_walk:
			tile_color = (1.0, 0.5, 0.5)
		if self.cant_cursor:
			tile_color = (0.5, 0.0, 0.0)
		if (self.x + self.z) % 2 == 0:
			tile_color = tuple([x * 0.8 for x in tile_color])
		self.tile_color = tile_color
		color.addData4f(*tile_color + (1.0,))
		color.addData4f(*tile_color + (1.0,))
		color.addData4f(*tile_color + (1.0,))
		color.addData4f(*tile_color + (1.0,))
		color.addData4f(*tile_color + (1.0,))
		primitive.addNextVertices(5)
		primitive.closePrimitive()
		geom = Geom(vdata)
		geom.addPrimitive(primitive)
		node = GeomNode('gnode')
		node.addGeom(geom)
		self.node_path = self.parent.node_path.attachNewNode(node)
		self.node_path.setH(rotation)
		can_stand_height = 0
		if not self.cant_cursor:
			can_stand_height = 1
		self.node_path.setPos(*coords_to_panda(self.x * 28 + 14, -((self.height + self.depth) * 12 + 1 + can_stand_height), self.z * 28 + 14))
		self.node_path.setTag('terrain_xyz', '%u,%u,%u' % (self.x, self.y, self.z))
Ejemplo n.º 17
0
class NavMesh(object):

    notify = directNotify.newCategory("NavMesh")

    def __init__(self, filepath=None, filename=None):
        if filename is not None:
            self._initFromFilename(filepath, filename)

    def initFromPolyData(self, polyToVerts, vertToPolys, polyToAngles,
                         vertexCoords, environmentHash):
        '''
        Initialize the mesh from a set of polygons.

        polyToVerts:     Dictionary mapping a polygon ID to a set of N vertex IDs
        vertToPolys:     Dictionary mapping a vertex ID to a set of poly IDs (of every poly that includes it)
        polyToAngles:    Dictionary mapping a polygon ID to a set of N angles (in vertex order)
        vertexCoords:    Dictionary mapping a vertex ID to the coordinates of the vertex in worldspace
        environmentHash: Hash value derived from the same collision geometry as the other arguments.  See AreaMapper.getEnvironmentHash().
        '''
        self.polyToVerts = polyToVerts
        self.vertToPolys = vertToPolys
        self.polyToAngles = polyToAngles
        self.vertexCoords = vertexCoords
        self.environmentHash = environmentHash

        self.connectionLookup = {}

        self.connections = []

        self._discoverInitialConnectivity()

        self.optimizeMesh()

    def visualize(self,
                  parentNodePath,
                  highlightVerts=[],
                  pathVerts=[],
                  visitedVerts=[]):
        '''
        XXX Should move this into a product-specific class.
        '''
        gFormat = GeomVertexFormat.getV3cp()
        self.visVertexData = GeomVertexData("OMGVERTEXDATA2", gFormat,
                                            Geom.UHDynamic)
        self.visVertexWriter = GeomVertexWriter(self.visVertexData, "vertex")
        self.visVertexColorWriter = GeomVertexWriter(self.visVertexData,
                                                     "color")

        vertToWriterIndex = {}
        currIndex = 0

        for v in self.vertexCoords.keys():
            vertToWriterIndex[v] = currIndex
            x = self.vertexCoords[v][0]
            y = self.vertexCoords[v][1]
            z = self.vertexCoords[v][2]
            self.visVertexWriter.addData3f(x, y, z + 0.5)
            if v in highlightVerts:
                self.visVertexColorWriter.addData4f(1.0, 0.0, 0.0, 1.0)
            elif v in visitedVerts:
                self.visVertexColorWriter.addData4f(0.0, 0.0, 1.0, 1.0)
            else:
                self.visVertexColorWriter.addData4f(1.0, 1.0, 0.0, 1.0)
            currIndex += 1

        pathOffsetIntoIndex = currIndex

        for v in pathVerts:
            self.visVertexWriter.addData3f(v[0], v[1], v[2] + 0.5)
            self.visVertexColorWriter.addData4f(0.0, 1.0, 0.0, 1.0)
            currIndex += 1

        lines = GeomLinestrips(Geom.UHStatic)

        for p in self.polyToVerts.keys():
            for v in self.polyToVerts[p]:
                lines.addVertex(vertToWriterIndex[v])
            lines.addVertex(vertToWriterIndex[self.polyToVerts[p][0]])
            lines.closePrimitive()

        if len(pathVerts) > 0:
            for i in xrange(len(pathVerts)):
                lines.addVertex(pathOffsetIntoIndex + i)
            lines.closePrimitive()

        self.visGeom = Geom(self.visVertexData)
        self.visGeom.addPrimitive(lines)

        self.visGN = GeomNode("NavMeshVis")
        self.visGN.addGeom(self.visGeom)

        self.visNodePath = parentNodePath.attachNewNode(self.visGN)

        self.visNodePath.setTwoSided(True)

    def _discoverInitialConnectivity(self):
        print "Building initial connectivity graph..."
        for pId in self.polyToVerts.keys():
            verts = self.polyToVerts[pId]

            numVerts = len(verts)
            candidates = []
            neighborPolys = []

            for v in verts:
                candidates += [
                    p for p in self.vertToPolys[v]
                    if (p not in candidates) and (p != pId)
                ]

            for vNum in xrange(numVerts):
                neighbor = [p for p in candidates if ((verts[vNum] in self.polyToVerts[p]) and \
                                                      (verts[(vNum+1)%numVerts] in self.polyToVerts[p]))]
                if len(neighbor) == 0:
                    neighborPolys.append(None)
                elif len(neighbor) == 1:
                    neighborPolys.append(neighbor[0])
                else:
                    raise "Two neighbors found for the same edge?!?!"

            self.connectionLookup[pId] = neighborPolys

    # --------- Begin stitching code ---------

    def _attemptToMergePolys(self, polyA, polyB):
        newVerts = []
        newAngles = []
        newConnections = []

        vertsA = self.polyToVerts[polyA]
        vertsB = self.polyToVerts[polyB]

        lenA = len(vertsA)
        lenB = len(vertsB)

        anglesA = self.polyToAngles[polyA]
        anglesB = self.polyToAngles[polyB]

        sharedVerts = [v for v in vertsA if (v in vertsB)]

        locA = 0

        while vertsA[locA] not in sharedVerts:
            locA += 1

        while vertsA[locA] in sharedVerts:
            locA = (locA - 1) % lenA

        locA = (locA + 1) % lenA

        CCWmost = vertsA[locA]
        CCWmostLocA = locA

        while vertsA[locA] in sharedVerts:
            locA = (locA + 1) % lenA

        locA = (locA - 1) % lenA

        CWmost = vertsA[locA]
        CWmostLocA = locA

        # Convexity Check.
        # Verify that removing the edge preserves convexity and bail out if not.

        locA = 0
        locB = 0
        while vertsA[locA] != CCWmost:
            locA += 1
        while vertsB[locB] != CCWmost:
            locB += 1
        CCWmostAngleSum = anglesA[locA] + anglesB[locB]
        CCWmostLocB = locB
        if CCWmostAngleSum > 180:
            return False

        locA = 0
        locB = 0
        while vertsA[locA] != CWmost:
            locA += 1
        while vertsB[locB] != CWmost:
            locB += 1
        CWmostAngleSum = anglesA[locA] + anglesB[locB]
        if CWmostAngleSum > 180:
            return False

        # We've found the CW-most vert of the shared edge.
        # Now walk A clockwise until we hit the CCW-most vert of the shared edge.

        newVerts.append(CWmost)
        newAngles.append(CWmostAngleSum)
        newConnections.append(self.connectionLookup[polyA][locA])
        locA = (locA + 1) % lenA

        while vertsA[locA] != CCWmost:
            newVerts.append(vertsA[locA])
            newAngles.append(anglesA[locA])
            newConnections.append(self.connectionLookup[polyA][locA])
            locA = (locA + 1) % lenA

        # Now we've hit the CCW-most vert of the shared edge.
        # Walk B clockwise until we get back to the CW-most vert of the shared edge.

        locB = CCWmostLocB

        newVerts.append(CCWmost)
        newAngles.append(CCWmostAngleSum)
        neighbor = self.connectionLookup[polyB][locB]
        newConnections.append(neighbor)
        if neighbor is not None:
            for i in xrange(len(self.connectionLookup[neighbor])):
                if self.connectionLookup[neighbor][i] == polyB:
                    self.connectionLookup[neighbor][i] = polyA

        locB = (locB + 1) % lenB

        while vertsB[locB] != CWmost:
            newVerts.append(vertsB[locB])
            newAngles.append(anglesB[locB])
            neighbor = self.connectionLookup[polyB][locB]
            newConnections.append(neighbor)
            if neighbor is not None:
                for i in xrange(len(self.connectionLookup[neighbor])):
                    if self.connectionLookup[neighbor][i] == polyB:
                        self.connectionLookup[neighbor][i] = polyA
            locB = (locB + 1) % lenB

        # We've added every vertex, its proper angle, and connectivity info
        # to the new polygon.  Now replace A with the new guy and remove B.

        self.polyToVerts[polyA] = newVerts
        self.polyToAngles[polyA] = newAngles
        self.connectionLookup[polyA] = newConnections

        # Make sure we have vertex->poly pointers for all the new verts we added to A.
        for v in newVerts:
            if polyA not in self.vertToPolys[v]:
                self.vertToPolys[v].append(polyA)

        # Clean up all of B's old vertices.
        for v in vertsB:
            self.vertToPolys[v].remove(polyB)
            if len(self.vertToPolys[v]) == 0:
                # No one's using this vertex anymore, remove it
                del self.vertToPolys[v]
                del self.vertexCoords[v]

        del self.polyToVerts[polyB]
        del self.polyToAngles[polyB]
        del self.connectionLookup[polyB]

        return True

    def _attemptToGrowPoly(self, pId):
        for neighbor in self.connectionLookup.get(pId, []):
            if (neighbor is not None) and self._attemptToMergePolys(
                    pId, neighbor):
                return True
        return False

    def _growEachPolyOnce(self):
        grewAtLeastOne = False

        for pId in self.connectionLookup.keys():
            if self._attemptToGrowPoly(pId):
                grewAtLeastOne = True

        return grewAtLeastOne

    def optimizeMesh(self):
        '''
        Takes a mesh that is already functionally complete and optimizes it for better performance.
        Reduces poly count and cuts out redundant vertices.
        Also compacts the polygon IDs into a contiguous range from 0 to N.
        No need to do the same for vertex IDs yet.
        '''
        '''print "Stitching polygons: %s -> " % (len(self.polyToVerts)),
        orig = len(self.polyToVerts)
        numPasses = 1
        while self._growEachPolyOnce():
            print "%s -> " % (len(self.polyToVerts)),
            numPasses += 1
        print "Done!\nPoly count reduced to %0.1f%% of original." % (len(self.polyToVerts)/float(orig)*100.0)'''

        self._pruneExtraVerts()

        self._compactPolyIds()

        self.numNodes = len(self.connections)

        biggest = 0
        biggestPoly = -1
        for p in self.polyToVerts:
            if len(self.polyToVerts[p]) > biggest:
                biggest = len(self.polyToVerts[p])
                biggestPoly = p

        print "Most verts in a single poly: ", biggest
        assert biggest < 256

    def _cleanPoly(self, polyId):
        verts = self.polyToVerts[polyId]
        angles = self.polyToAngles[polyId]
        neighbors = self.connectionLookup[polyId]
        numVerts = len(verts)

        newVerts = []
        newAngles = []
        newNeighbors = []

        for i in xrange(numVerts):
            if (angles[i] != 180) or \
               (len(self.vertToPolys.get(verts[i],[])) > 2) or \
               (neighbors[i] != neighbors[(i-1)%numVerts]):
                # Keep vertex
                newVerts.append(verts[i])
                newAngles.append(angles[i])
                newNeighbors.append(neighbors[i])
            else:
                # Remove vertex, this will happen twice so pop it
                self.vertToPolys.pop(verts[i], None)
                self.vertexCoords.pop(verts[i], None)

        if len(verts) != len(newVerts):
            self.polyToVerts[polyId] = newVerts
            self.polyToAngles[polyId] = newAngles
            self.connectionLookup[polyId] = newNeighbors

        assert len(newVerts) < 256

    def _pruneExtraVerts(self):
        print "Pruning extra vertices..."
        print "Starting verts: %s" % len(self.vertToPolys)
        for polyId in self.connectionLookup.keys():
            self._cleanPoly(polyId)
        print "Ending verts: %s" % len(self.vertToPolys)

    def _compactPolyIds(self):
        polyList = self.polyToVerts.keys()
        polyList.sort()

        oldToNewId = {None: None}

        newPolyToVerts = {}
        newPolyToAngles = {}
        self.connections = []

        currId = 0

        for oldId in polyList:
            oldToNewId[oldId] = currId
            self.connections.append([])
            currId += 1

        for oldId in polyList:
            newPolyToVerts[oldToNewId[oldId]] = self.polyToVerts[oldId]
            newPolyToAngles[oldToNewId[oldId]] = self.polyToAngles[oldId]
            #self.connections[oldToNewId[oldId]] = []
            for edgeNum in xrange(len(self.connectionLookup[oldId])):
                self.connections[oldToNewId[oldId]].append(
                    oldToNewId[self.connectionLookup[oldId][edgeNum]])

        self.polyToVerts = newPolyToVerts
        self.polyToAngles = newPolyToAngles
        del self.connectionLookup

    # --------- Begin pathfinding code ---------

    def _findCentroid(self, polyId):
        verts = self.polyToVerts[polyId]
        numVerts = len(verts)
        x = 0
        y = 0
        z = 0
        for v in verts:
            x += self.vertexCoords[v][0]
            y += self.vertexCoords[v][1]
            z += self.vertexCoords[v][2]

        x /= numVerts
        y /= numVerts
        z /= numVerts

        return (x, y, z)

##     def _estimateDistanceBetweenPolys(self, polyA, polyB):
##         centroidA = self._findCentroid(polyA)
##         centroidB = self._findCentroid(polyB)

##         dx = centroidA[0] - centroidB[0]
##         dy = centroidA[1] - centroidB[1]
##         dz = centroidA[2] - centroidB[2]

##         return math.sqrt(dx*dx + dy*dy + dz*dz)

    def _walkToNeighbor(self, currPoly, neighborPoly):
        currVerts = self.polyToVerts[currPoly]
        neighborVerts = self.polyToVerts[neighborPoly]

        lenCurr = len(currVerts)

        sharedVerts = [v for v in currVerts if (v in neighborVerts)]

        loc = 0

        while currVerts[loc] not in sharedVerts:
            loc += 1

        while currVerts[loc] in sharedVerts:
            loc = (loc - 1) % lenCurr

        loc = (loc + 1) % lenCurr

        CCWmost = currVerts[loc]
        CCWmostLoc = loc

        while currVerts[loc] in sharedVerts:
            loc = (loc + 1) % lenCurr

        loc = (loc - 1) % lenCurr

        CWmost = currVerts[loc]

        CCWmostCoords = self.vertexCoords[CCWmost]
        CWmostCoords = self.vertexCoords[CWmost]

        # For now, walk to the midpoint of the connecting edge

        departingEdge = CCWmostLoc  # Don't need this with goal->start search

        neighborsEdge = 0
        while self.connections[neighborPoly][neighborsEdge] != currPoly:
            neighborsEdge += 1

        return (neighborsEdge, ((CWmostCoords[0] + CCWmostCoords[0]) / 2.0,
                                (CWmostCoords[1] + CCWmostCoords[1]) / 2.0,
                                (CWmostCoords[2] + CCWmostCoords[2]) / 2.0))

##     def _remakePath(self,walkBack,currNode):
##         if currNode in walkBack:
##             p = self._remakePath(walkBack,walkBack[currNode])
##             return p + [currNode,]
##         return [currNode,]

##     def findRoute(self, startNode, goalNode):
##         '''
##         So much love for A*.
##         '''
##         nodeToF = {}
##         nodeToG = {}
##         nodeToH = {}

##         walkBack = {}

##         #nodeToEntryPoint = {}
##         self.nodeToEntryPoint[startNode] = self._findCentroid(startNode)

##         nodeToG[startNode] = 0
##         nodeToH[startNode] = self._estimateDistanceBetweenPolys(startNode,goalNode)
##         nodeToF[startNode] = nodeToG[startNode] + nodeToH[startNode]

##         closedSet = {}
##         openSet = {}
##         openQueue = PriQueue() # Priority = F score

##         openSet[startNode] = 1
##         openQueue.push((nodeToF[startNode],startNode))

##         goalPoint = self._findCentroid(goalNode)

##         while len(openSet) > 0:
##             f,currNode = openQueue.pop(0)
##             del openSet[currNode]

##             self.aStarWasHere[currNode] = 1

##             if currNode == goalNode:
##                 return self._remakePath(walkBack,currNode)

##             closedSet[currNode] = 1

##             currPoint = self.nodeToEntryPoint[currNode]

##             for neighbor in self.connections[currNode]:
##                 if (neighbor is not None) and (neighbor not in closedSet):
##                     departingEdge,newEntryPoint = self._walkToNeighbor(currNode,currPoint,neighbor)
##                     newG = nodeToG[currNode] + math.sqrt((newEntryPoint[0] - currPoint[0])**2 + \
##                                                          (newEntryPoint[1] - currPoint[1])**2 + \
##                                                          (newEntryPoint[2] - currPoint[2])**2)
##                     gotHereFasterThanBefore = False

##                     if neighbor not in openSet:
##                         openSet[neighbor] = 1
##                         gotHereFasterThanBefore = True
##                     elif newG < nodeToG[neighbor]:
##                         openQueue.remove((nodeToF[neighbor],neighbor))
##                         gotHereFasterThanBefore = True

##                     if gotHereFasterThanBefore:
##                         walkBack[neighbor] = currNode
##                         self.nodeToEntryPoint[neighbor] = newEntryPoint
##                         nodeToH[neighbor] = math.sqrt((goalPoint[0] - newEntryPoint[0])**2 + \
##                                                       (goalPoint[1] - newEntryPoint[1])**2 + \
##                                                       (goalPoint[2] - newEntryPoint[2])**2)
##                         nodeToG[neighbor] = newG
##                         nodeToF[neighbor] = nodeToG[neighbor] + nodeToH[neighbor]
##                         openQueue.push((nodeToF[neighbor],neighbor))

##         raise "No path found!  D:"

    def _findAllRoutesToGoal(self, goalNode):
        '''
        Find the shortest path from ALL start nodes to the given goal node.  (Djikstra)
        
        After running, self.pathData[startNode][goalNode] == outgoing edge from startNode to the next node
        for the given value of goalNode and ALL values of startNode.
        '''
        nodeToG = {}

        walkBack = {}

        nodeDeparturePoint = {}
        nodeDeparturePoint[goalNode] = self._findCentroid(goalNode)

        nodeToG[goalNode] = 0

        closedSet = {}
        openSet = {}
        openQueue = PriQueue()

        openSet[goalNode] = 1
        openQueue.push((nodeToG[goalNode], goalNode))

        walkBack[goalNode] = (0, goalNode)

        while len(openSet) > 0:
            f, currNode = openQueue.pop(0)
            del openSet[currNode]

            closedSet[currNode] = 1

            currPoint = nodeDeparturePoint[currNode]

            for neighbor in self.connections[currNode]:
                if (neighbor is not None) and (neighbor not in closedSet):
                    neighborsEdge, newPoint = self._walkToNeighbor(
                        currNode, neighbor)
                    newG = nodeToG[currNode] + math.sqrt((newPoint[0] - currPoint[0])**2 + \
                                                         (newPoint[1] - currPoint[1])**2 + \
                                                         (newPoint[2] - currPoint[2])**2)
                    gotHereFasterThanBefore = False

                    if neighbor not in openSet:
                        openSet[neighbor] = 1
                        gotHereFasterThanBefore = True
                    elif newG < nodeToG[neighbor]:
                        openQueue.remove((nodeToG[neighbor], neighbor))
                        gotHereFasterThanBefore = True

                    if gotHereFasterThanBefore:
                        walkBack[neighbor] = (neighborsEdge, currNode)
                        nodeDeparturePoint[neighbor] = newPoint
                        nodeToG[neighbor] = newG
                        openQueue.push((nodeToG[neighbor], neighbor))

        for startNode in xrange(len(self.connections)):
            departingEdge = walkBack[startNode][0]

            assert self.pathData[startNode][goalNode] is None

            self.pathData[startNode][goalNode] = departingEdge

    def generatePathData(self, rowRange=None):
        '''
        Entry point for path preprocessing.
        Solves all pairs shortest path for this mesh.
        Stores the result in self.pathData.
        SLOW.  Expect 8-10 minutes on Port Royal alone.

        Currently runs Djikstra on every possible start node.
        There are faster approaches for APSP, but...
        '''
        if rowRange is None:
            rowRange = (0, self.numNodes)

        self.initPathData()

        for goalNode in xrange(rowRange[0], rowRange[1]):
            self._findAllRoutesToGoal(goalNode)

    def createPathTable(self):
        '''
        Takes a 2D array self.pathData and changes it in place.
        Each row is changed into a run-length encoded string.
        Then, feeds the data into a new PathTable instance.
        '''
        for row in self.pathData:
            for val in row:
                if val == None:
                    raise "Incomplete path data!"

        shortestPathLookup = self.pathData

        self.pathData = []

        # Run-Length Encode the whole thing!
        for start in xrange(self.numNodes):
            row = []
            lastVal = None
            nodesInRow = 0
            for goal in xrange(self.numNodes):
                val = shortestPathLookup[start][goal]
                if val != lastVal:
                    row.append([goal, val])
                    lastVal = val
                    nodesInRow += 1
                else:
                    nodesInRow += 1

            assert nodesInRow == self.numNodes

            stringsRow = []

            # Convert row to a bytestring to save space
            for item in row:
                assert item[0] < 65536
                assert item[1] < 256

                stringsRow.append(
                    chr(item[0] / 256) + chr(item[0] % 256) + chr(item[1]))

                assert len(stringsRow[-1]) == 3

            rowString = string.join(stringsRow, "")

            self.pathData.append(rowString)

        self.pathTable = PathTable(self.pathData, self.connections)

    def printPathData(self):
        '''
        Outputs the pickled path table to stdout.
        '''
        import sys
        sys.stdout.write(pickle.dumps(self.pathData, protocol=0))

    def initPathData(self):
        self.pathData = []

        for i in xrange(self.numNodes):
            self.pathData.append([
                None,
            ] * self.numNodes)

    def addPaths(self, partialData):
        for i in xrange(len(partialData)):
            for j in xrange(len(partialData[i])):
                if partialData[i][j] is not None:
                    assert self.pathData[i][j] is None
                    self.pathData[i][j] = partialData[i][j]

##     def pathTableLookup(self, startNode, goalNode):
##         '''
##         Look up the equivalent of pathData[goalNode][startNode] in our run-length encoded data.
##         '''
##         if startNode >= self.numNodes or goalNode >= self.numNodes:
##             raise "Invalid node ID.  Must be less than self.numNodes (%s)." % self.numNodes

##         str = self.pathData[startNode]

##         pos = 0

##         while (pos < len(str)) and (256*ord(str[pos]) + ord(str[pos+1]) <= goalNode):
##             #print pos, ": ",256*ord(str[pos]) + ord(str[pos+1])
##             pos += 3

##         pos -= 3

##         return ord(str[pos+2])

    def findRoute(self, startNode, goalNode):
        '''
        Returns the node-by-node route from startNode to goalNode.
        '''
        return self.pathTable.findRoute(startNode, goalNode)

    def makeNodeLocator(self, environment):
        meshNode = CollisionNode("NavMeshNodeLocator")
        meshNode.setFromCollideMask(BitMask32.allOff())
        meshNode.setIntoCollideMask(OTPGlobals.PathFindingBitmask)

        self.polyHashToPID = {}

        for pId in self.polyToAngles:
            vertCount = 0
            corners = []
            for angle in self.polyToAngles[pId]:
                if angle != 180:
                    # It's a corner
                    corners.append(vertCount)
                vertCount += 1

            # XXX this code only works for square nodes at present
            # Unfortunately we can only make triangle or square CollisionPolygons on the fly
            assert len(corners) == 4

            #import pdb
            #pdb.set_trace()

            verts = []

            for vert in corners:
                verts.append(
                    (self.vertexCoords[self.polyToVerts[pId][vert]][0],
                     self.vertexCoords[self.polyToVerts[pId][vert]][1], 0))

            #import pdb
            #pdb.set_trace()

            poly = CollisionPolygon(verts[0], verts[1], verts[2], verts[3])

            assert poly not in self.polyHashToPID

            self.polyHashToPID[poly] = pId

            meshNode.addSolid(poly)

        ray = CollisionRay()
        ray.setDirection(0, 0, -1)
        ray.setOrigin(0, 0, 0)

        rayNode = CollisionNode("NavMeshRay")
        rayNode.setFromCollideMask(OTPGlobals.PathFindingBitmask)
        rayNode.setIntoCollideMask(BitMask32.allOff())
        rayNode.addSolid(ray)

        self.meshNodePath = environment.attachNewNode(meshNode)
        self.rayNodePath = environment.attachNewNode(rayNode)

        self.meshNodePath.setTwoSided(True)

        self.chq = CollisionHandlerQueue()
        self.traverser = CollisionTraverser()
        self.traverser.addCollider(self.rayNodePath, self.chq)

    def findNodeFromPos(self, environment, x, y):
        self.rayNodePath.setPos(environment, x, y, 50000)
        self.chq.clearEntries()

        self.traverser.traverse(self.meshNodePath)

        if self.chq.getNumEntries() != 1:
            self.notify.warning("No node found at position: %s, %s in %s" %
                                (x, y, environment))
            return 0

        e = self.chq.getEntry(0)

        assert e.hasInto()
        if not e.hasInto():
            self.notify.warning("No into found for collision %s" % (e))

        pId = self.polyHashToPID[e.getInto()]

        return pId

    # --------- Begin long-term storage code ---------

    def writeToFile(self, filename, storePathTable=True):
        '''
        Output the contents of this mesh to the file specified.
        Saving to a file lets us avoid doing expensive precomputation every time a mesh instance is required.
        '''
        if self.environmentHash is None:
            raise "Attempted write to file without valid environment hash!"

        if storePathTable and not self.pathData:
            raise "Attempted to write empty pathData.  Call NavMesh.generatePathTable() first!"

        f = open(filename, 'wb')

        if storePathTable:
            pickle.dump([
                self.environmentHash, self.polyToVerts, self.polyToAngles,
                self.vertexCoords, self.connections, self.pathData
            ],
                        f,
                        protocol=2)
            f.close()
            self.pathData = None
        else:
            pickle.dump([
                self.environmentHash, self.polyToVerts, self.polyToAngles,
                self.vertexCoords, self.connections, None
            ],
                        f,
                        protocol=2)
            f.close()

        print "Successfully wrote to file %s." % filename

    def _initFromString(self, str):
        contents = pickle.loads(str)

        self.environmentHash = contents[0]
        self.polyToVerts = contents[1]
        self.polyToAngles = contents[2]
        self.vertexCoords = contents[3]
        self.connections = contents[4]
        self.pathData = contents[5]

        if self.pathData is not None:
            self.pathTable = PathTable(self.pathData, self.connections)
            self.pathData = None

        self.numNodes = len(self.connections)

    def _initFromFilename(self, filepath, filename):
        vfs = VirtualFileSystem.getGlobalPtr()
        filename = Filename(filename)
        searchPath = DSearchPath()
        #searchPath.appendDirectory(Filename('.'))
        #searchPath.appendDirectory(Filename('etc'))
        #searchPath.appendDirectory(Filename.fromOsSpecific(os.path.expandvars('~')))
        #searchPath.appendDirectory(Filename.fromOsSpecific(os.path.expandvars('$HOME')))
        searchPath.appendDirectory(
            Filename.fromOsSpecific(os.path.expandvars(filepath)))

        found = vfs.resolveFilename(filename, searchPath)

        if not found:
            raise IOError, "File not found!"

        str = vfs.readFile(filename, 1)

        self._initFromString(str)

    def checkHash(self, envHash):
        '''
        "Does this mesh represent the environment I think it does?"
        If this check fails, the mesh is out of date (or being used with the wrong environment).
        In either case, whoever generated this instance should discard it and create a new mesh from scratch.
        '''
        return envHash == self.environmentHash
Ejemplo n.º 18
0
  def draw_body(self, position, vector_list, radius = 1, keep_drawing = True, num_vertices = 8):
    circle_geom = Geom(self.vdata)

    vertex_writer = GeomVertexWriter(self.vdata, "vertex")
    color_writer = GeomVertexWriter(self.vdata, "color")
    normal_writer = GeomVertexWriter(self.vdata, "normal")
    draw_rewriter = GeomVertexRewriter(self.vdata, "drawFlag")
    tex_rewriter = GeomVertexRewriter(self.vdata, "texcoord")

    start_row = self.vdata.getNumRows()
    vertex_writer.setRow(start_row)
    color_writer.setRow(start_row)
    normal_writer.setRow(start_row)

    sCoord = 0

    if start_row != 0:
      tex_rewriter.setRow(start_row - num_vertices)
      sCoord = tex_rewriter.getData2f().getX() + 1

      draw_rewriter.setRow(start_row - num_vertices)
      if draw_rewriter.getData1f() == False:
        sCoord -= 1

    draw_rewriter.setRow(start_row)
    tex_rewriter.setRow(start_row)

    angle_slice = 2 * math.pi / num_vertices
    current_angle = 0

    perp1 = vector_list[1]
    perp2 = vector_list[2]

    # write vertex information
    for i in range(num_vertices):
      adjacent_circle = position + (perp1 * math.cos(current_angle) + perp2 * math.sin(current_angle)) * radius
      normal = perp1 * math.cos(current_angle) + perp2 * math.sin(current_angle)
      normal_writer.addData3f(normal)
      vertex_writer.addData3f(adjacent_circle)
      tex_rewriter.addData2f(sCoord, (i + 0.001) / (num_vertices - 1))
      color_writer.addData4f(0.5, 0.5, 0.5, 1.0)
      draw_rewriter.addData1f(keep_drawing)
      current_angle += angle_slice

    draw_reader = GeomVertexReader(self.vdata, "drawFlag")
    draw_reader.setRow(start_row - num_vertices)

    # we can't draw quads directly so use Tristrips
    if start_row != 0 and draw_reader.getData1f() != False:
      lines = GeomTristrips(Geom.UHStatic)
      half = int(num_vertices * 0.5)
      for i in range(num_vertices):
        lines.addVertex(i + start_row)
        if i < half:
          lines.addVertex(i + start_row - half)
        else:
          lines.addVertex(i + start_row - half - num_vertices)

      lines.addVertex(start_row)
      lines.addVertex(start_row - half)
      lines.closePrimitive()
      lines.decompose()
      circle_geom.addPrimitive(lines)

      circle_geom_node = GeomNode("Debug")
      circle_geom_node.addGeom(circle_geom)

      circle_geom_node.setAttrib(CullFaceAttrib.makeReverse(), 1)

      self.get_model().attachNewNode(circle_geom_node)
Ejemplo n.º 19
0
  def make_layer(self, i, a, b):
    # get data
    data = self.subdata[a][b]

    # set color + alpha of vertex texture
    def ap(n):
      alpha = 0
      if i == n:
        alpha = 1.0
      return alpha
    def tp(n):
      list = [0, 0, 0, 0]
      if i == n:
        list = [1, 1, 1, 0.75]
      return list

    # set vertex data
    vdata = GeomVertexData('plane', GeomVertexFormat.getV3n3c4t2(), Geom.UHStatic)
    vertex = GeomVertexWriter(vdata, 'vertex')
    normal = GeomVertexWriter(vdata, 'normal')
    color = GeomVertexWriter(vdata, 'color')
    uv = GeomVertexWriter(vdata, 'texcoord')

    # set vertices
    number = 0
    for x in range(0, len(data) - 1):
      for y in range(0, len(data[x]) - 1):
        # get vertex data
        v1 = Vec3(x, y, data[x][y]['h'])
        c1 = data[x][y]['c']
        t1 = data[x][y]['texnum']
        v2 = Vec3(x+1, y, data[x+1][y]['h'])
        c2 = data[x+1][y]['c']
        t2 = data[x+1][y]['texnum']
        v3 = Vec3(x+1, y+1, data[x+1][y+1]['h'])
        c3 = data[x+1][y+1]['c']
        t3 = data[x+1][y+1]['texnum']
        v4 = Vec3(x, y+1, data[x][y+1]['h'])
        c4 = data[x][y+1]['c']
        t4 = data[x][y+1]['texnum']
        n=(0, 0, 1) # normal

        # assign vertex colors + alpha
        a1, a2, a3, a4 = ap(t1), ap(t2), ap(t3), ap(t4)
        t1, t2, t3, t4 = tp(t1), tp(t2), tp(t3), tp(t4)

        if v1[2]==0:
          t1 = [data[x][y]['c'][0], data[x][y]['c'][1], data[x][y]['c'][2],
                a1]
        if v2[2]==0:
          t2 = [data[x+1][y]['c'][0], data[x+1][y]['c'][1],
                data[x+1][y]['c'][2], a2]
        if v3[2]==0:
          t3 = [data[x+1][y+1]['c'][0], data[x+1][y+1]['c'][1],
                data[x+1][y+1]['c'][2], a3]
        if v4[2]==0:
          t4 = [data[x][y+1]['c'][0], data[x][y+1]['c'][1],
                data[x][y+1]['c'][2], a4]

        if a1 == 0 and a2 == 0 and a3 == 0 and a4 == 0:
          continue

        # add vertices
        vertex.addData3f(v1)
        normal.addData3f(*n)
        color.addData4f(*t1)
        uv.addData2f(0,0)

        vertex.addData3f(v2)
        normal.addData3f(*n)
        color.addData4f(*t2)
        uv.addData2f(1,0)

        vertex.addData3f(v3)
        normal.addData3f(*n)
        color.addData4f(*t3)
        uv.addData2f(1,1)

        vertex.addData3f(v1)
        normal.addData3f(*n)
        color.addData4f(*t1)
        uv.addData2f(0,0)

        vertex.addData3f(v3)
        normal.addData3f(*n)
        color.addData4f(*t3)
        uv.addData2f(1,1)

        vertex.addData3f(v4)
        normal.addData3f(*n)
        color.addData4f(*t4)
        uv.addData2f(0,1)

        number = number + 2

    # add triangles
    prim = GeomTriangles(Geom.UHStatic)
    for n in range(number):
      prim.addVertices((n * 3) + 2, (n * 3) + 0, (n * 3) + 1)
    prim.closePrimitive()

    # make geom
    geom = Geom(vdata)
    geom.addPrimitive(prim)

    # make geom node
    node = GeomNode("layer" + str(i) + "_" + str(a) + "_" + str(b))
    node.addGeom(geom)

    # make mesh nodePath
    mesh = NodePath(node)

    # load and assign texture
    txfile = self.tiles[i]['tex']
    tx = base.loader.loadTexture(txfile)
    tx.setMinfilter(Texture.FTLinearMipmapLinear)
    mesh.setDepthTest(DepthTestAttrib.MLessEqual)
    mesh.setDepthWrite(False)
    mesh.setTransparency(True)
    mesh.setTexture(tx)

    # set render order
    mesh.setBin("", 1)

    # locate mesh
    mesh.setPos(self.divsep * (a * int(len(self.data[a]) / self.div)),
                self.divsep * (b * int(len(self.data[b]) / self.div)), 0.001)

    # reparent mesh
    mesh.reparentTo(self.root)

    # return mesh
    return mesh
Ejemplo n.º 20
0
  def make_base(self, a, b):
    # get data
    data = self.subdata[a][b]
    # set vertex data
    vdata = GeomVertexData('plane', GeomVertexFormat.getV3n3c4t2(), Geom.UHStatic)
    vertex = GeomVertexWriter(vdata, 'vertex')
    normal = GeomVertexWriter(vdata, 'normal')
    color = GeomVertexWriter(vdata, 'color')
    uv = GeomVertexWriter(vdata, 'texcoord')

    # set vertices
    number = 0
    for x in range(0, len(data) - 1):
      for y in range(0, len(data[x]) - 1):
        # get vertex data
        v1 = Vec3(x, y, data[x][y]['h'])
        v2 = Vec3(x + 1, y, data[x+1][y]['h'])
        v3 = Vec3(x + 1, y + 1, data[x+1][y+1]['h'])
        v4 = Vec3(x, y + 1, data[x][y+1]['h'])
        n = (0, 0, 1) # normal

        # assign vertex colors + alpha
        option = 1 # black
        if option == 1:
          c = 0
          c1 = [c, c, c, 1]
          c2 = [c, c, c, 1]
          c3 = [c, c, c, 1]
          c4 = [c, c, c, 1]
        # option2: color vertices
        if option == 2:
          alpha = 1.0
          c1 = [data[x][y]['c'][0], data[x][y]['c'][1],
                data[x][y]['c'][2], alpha]
          c2 = [data[x+1][y]['c'][0], data[x+1][y]['c'][1],
                data[x+1][y]['c'][2], alpha]
          c3 = [data[x+1][y+1]['c'][0], data[x+1][y+1]['c'][1],
                data[x+1][y+1]['c'][2], alpha]
          c4 = [data[x][y+1]['c'][0], data[x][y+1]['c'][1],
                data[x][y+1]['c'][2], alpha]

        if option == 3:
          c1 = self.color_vertex(v1)
          c2 = self.color_vertex(v2)
          c3 = self.color_vertex(v3)
          c4 = self.color_vertex(v4)

        vertex.addData3f(v1)
        normal.addData3f(*n)
        color.addData4f(*c1)
        uv.addData2f(0,0)

        vertex.addData3f(v2)
        normal.addData3f(*n)
        color.addData4f(*c2)
        uv.addData2f(1,0)

        vertex.addData3f(v3)
        normal.addData3f(*n)
        color.addData4f(*c3)
        uv.addData2f(1,1)

        vertex.addData3f(v1)
        normal.addData3f(*n)
        color.addData4f(*c1)
        uv.addData2f(0,0)

        vertex.addData3f(v3)
        normal.addData3f(*n)
        color.addData4f(*c3)
        uv.addData2f(1,1)

        vertex.addData3f(v4)
        normal.addData3f(*n)
        color.addData4f(*c4)
        uv.addData2f(0,1)

#         # add vertex h
#         vertex.addData3f(v1)
#         # normal.addData3f(*n)
#         vertex.addData3f(v2)
#         # normal.addData3f(*n)
#         vertex.addData3f(v3)
#         # normal.addData3f(*n)
#         vertex.addData3f(v1)
#         # normal.addData3f(*n)
#         vertex.addData3f(v3)
#         # normal.addData3f(*n)
#         vertex.addData3f(v4)
#         # normal.addData3f(*n)
#         # add vertex color
#         color.addData4f(*c1)
#         color.addData4f(*c2)
#         color.addData4f(*c3)
#         color.addData4f(*c1)
#         color.addData4f(*c3)
#         color.addData4f(*c4)

        # iterate
        number = number + 2

    # add triangles
    prim = GeomTriangles(Geom.UHStatic)
    for n in range(number):
      prim.addVertices((n * 3) + 2, (n * 3) + 0, (n * 3) + 1)
    prim.closePrimitive()

    # make geom
    geom = Geom(vdata)
    geom.addPrimitive(prim)

    # make geom node
    node = GeomNode("base" + "_" + str(a) + "_" + str(b))
    node.addGeom(geom)

    # make mesh nodePath
    mesh = NodePath(node)
    # set render order
    mesh.setBin("", 1)

    # locate mesh
    mesh.setPos(self.divsep * (a * int(len(self.data[a]) / self.div)),
                self.divsep * (b * int(len(self.data[b]) / self.div)), 0)

    # reparent mesh
    mesh.reparentTo(self.root)

    # return mesh
    return mesh
Ejemplo n.º 21
0
    def _create_vertex_data(self):
        """Creates and fills the vertex data store."""
        format = GeomVertexFormat.getV3n3cp()
        vdata = GeomVertexData('surface', format, Geom.UHDynamic)
        tri = GeomTriangles(Geom.UHDynamic)

        vertex = GeomVertexWriter(vdata, 'vertex')
        normal = GeomVertexWriter(vdata, 'normal')
        color = GeomVertexWriter(vdata, 'color')

        vertmap = [(0, 1), (1, 2), (2, 3), (3, 0), (4, 5), (5, 6), (6, 7), (7, 4), (0, 4), (1, 5), (2, 6), (3, 7)]

        def generate_index(x, y, z):
            return x + \
                   y * (self._surface.mls_subdivisions+2) + \
                   z * (self._surface.mls_subdivisions+2)**2

        numbering_scheme = [
                (0, 0, 1),
                (1, 0, 1),
                (1, 0, 0),
                (0, 0, 0),
                (0, 1, 1),
                (1, 1, 1),
                (1, 1, 0),
                (0, 1, 0)]

        vertices = zeros((12,), dtype='3f')
        vertex_normals = zeros((12,), dtype='3f')
        # walk the cubes
        for x_index in range(self._surface.mls_subdivisions+1):
            for y_index in range(self._surface.mls_subdivisions+1):
                for z_index in range(self._surface.mls_subdivisions+1):
                    #points = map(lambda offsets: self._surface.mls_points[generate_index(array([x_index, y_index, z_index]) + offsets)], numbering_scheme)
                    points = [
                            self._surface.mls_points[generate_index(x_index + 0, y_index + 0, z_index + 1)],
                            self._surface.mls_points[generate_index(x_index + 1, y_index + 0, z_index + 1)],
                            self._surface.mls_points[generate_index(x_index + 1, y_index + 0, z_index + 0)],
                            self._surface.mls_points[generate_index(x_index + 0, y_index + 0, z_index + 0)],
                            self._surface.mls_points[generate_index(x_index + 0, y_index + 1, z_index + 1)],
                            self._surface.mls_points[generate_index(x_index + 1, y_index + 1, z_index + 1)],
                            self._surface.mls_points[generate_index(x_index + 1, y_index + 1, z_index + 0)],
                            self._surface.mls_points[generate_index(x_index + 0, y_index + 1, z_index + 0)],
                            ]
                    values = [
                            self._surface.mls_distances[generate_index(x_index + 0, y_index + 0, z_index + 1)],
                            self._surface.mls_distances[generate_index(x_index + 1, y_index + 0, z_index + 1)],
                            self._surface.mls_distances[generate_index(x_index + 1, y_index + 0, z_index + 0)],
                            self._surface.mls_distances[generate_index(x_index + 0, y_index + 0, z_index + 0)],
                            self._surface.mls_distances[generate_index(x_index + 0, y_index + 1, z_index + 1)],
                            self._surface.mls_distances[generate_index(x_index + 1, y_index + 1, z_index + 1)],
                            self._surface.mls_distances[generate_index(x_index + 1, y_index + 1, z_index + 0)],
                            self._surface.mls_distances[generate_index(x_index + 0, y_index + 1, z_index + 0)],
                            ]
                    #values = map(lambda offsets: self._surface.mls_distances[generate_index(array([x_index, y_index, z_index]) + offsets)], numbering_scheme)
                    cubeindex = self._get_cubeindex(values)
                    for n in range(12):
                        if self.edge_table[cubeindex] & (2**n):
                            t_v, t_n = self._interpolate(points[vertmap[n][0]], points[vertmap[n][1]], values[vertmap[n][0]], values[vertmap[n][1]])
                            vertices[n] = t_v
                            vertex_normals[n] = t_n/norm(t_n)
                        else:
                            vertices[n] = 0
                            vertex_normals[n] = 0

                    triangles = []
                    i = 0
                    while self.triangle_table[cubeindex][i] != -1:
                        triangles.append([self.triangle_table[cubeindex][i],
                                         self.triangle_table[cubeindex][i+1],
                                         self.triangle_table[cubeindex][i+2]])
                        i += 3

                    for triangle in triangles:
                        vertex.addData3f(*vertices[triangle[0]])
                        vertex.addData3f(*vertices[triangle[1]])
                        vertex.addData3f(*vertices[triangle[2]])
                        normal.addData3f(*vertex_normals[triangle[0]])
                        normal.addData3f(*vertex_normals[triangle[1]])
                        normal.addData3f(*vertex_normals[triangle[2]])
                        #color.addData4f(self._color[0], self._color[1], self._color[2], self._color[3])
                        #color.addData4f(self._color[0], self._color[1], self._color[2], self._color[3])
                        #color.addData4f(self._color[0], self._color[1], self._color[2], self._color[3])
                        color.addData4f(*self._color)
                        color.addData4f(*self._color)
                        color.addData4f(*self._color)
                        tri.addNextVertices(3)

        self._vdata = vdata
        tri.closePrimitive()
        self._geom_primitives = [tri, ]
Ejemplo n.º 22
0
def generate_sphere(name, radius, resolution):
    """
    Generates a sphere with the provided resolution.

    @type name: string
    @param name: Name of this sphere.

    @type radius: number
    @param radius: Radius of sphere in kilometers.

    @type resolution: number
    @param resolution: Resolution of sphere (minimum 2)

    @rtype: GeomNode
    @return: A GeomNode with the given sphere.
    """

    if resolution < 2:
        raise ValueError, "resolution must be >= 2"

    horizBands = resolution*2
    vertBands = horizBands*2

    vertexFormat = GeomVertexFormat.getV3n3c4t2()
    vdata = GeomVertexData('%s_vdata' % name, vertexFormat, Geom.UHDynamic)

    vertex = GeomVertexWriter(vdata, 'vertex')
    color = GeomVertexWriter(vdata, 'color')
    normal = GeomVertexWriter(vdata, 'normal')
    texcoord = GeomVertexWriter(vdata, 'texcoord')

    vertDelta = omath.TWOPI / vertBands
    horizDelta = omath.TWOPI / horizBands

    numVertices = 0

    for i in range(vertBands+1):
        lowTheta = i * vertDelta
        highTheta = (i+1) * vertDelta

        cosLowTheta = math.cos(lowTheta)
        sinLowTheta = math.sin(lowTheta)
        cosHighTheta = math.cos(highTheta)
        sinHighTheta = math.sin(highTheta)

        for j in range(horizBands):
            horizTheta = j * horizDelta

            cosHorizTheta = math.cos(horizTheta)
            sinHorizTheta = math.sin(horizTheta)

            ex = cosLowTheta*cosHorizTheta
            ey = sinLowTheta
            ez = cosLowTheta*sinHorizTheta

            vertex.addData3f(ex*radius, ey*radius, ez*radius)
            normal.addData3f(ex, ey, ez)
            color.addData4f(.75, .75, .75, 1)
            texcoord.addData2f(i / vertBands, j / horizBands)

            ex = cosHighTheta*cosHorizTheta
            ey = sinHighTheta
            ez = cosHighTheta*sinHorizTheta

            vertex.addData3f(ex*radius, ey*radius, ez*radius)
            normal.addData3f(ex, ey, ez)
            color.addData4f(.75, .75, .75, 1)
            texcoord.addData2f(i / vertBands, j / horizBands)

            numVertices += 2

    prim = GeomTristrips(Geom.UHStatic)
    prim.addConsecutiveVertices(0, numVertices)
    prim.closePrimitive()

    geom = Geom(vdata)
    geom.addPrimitive(prim)

    geomNode = GeomNode(name)
    geomNode.addGeom(geom)

    return GeomScaler(geomNode)
Ejemplo n.º 23
0
    def draw(self):
        format = GeomVertexFormat.getV3n3cpt2()
        vdata = GeomVertexData('square', format, Geom.UHStatic)

        vertex = GeomVertexWriter(vdata, 'vertex')
        normal = GeomVertexWriter(vdata, 'normal')
        color = GeomVertexWriter(vdata, 'color')
        texcoord = GeomVertexWriter(vdata, 'texcoord')

        #make sure we draw the sqaure in the right plane
        #if x1!=x2:
        vertex.addData3f(self.x1, self.y1, self.z1)
        vertex.addData3f(self.x2, self.y1, self.z1)
        vertex.addData3f(self.x2, self.y2, self.z2)
        vertex.addData3f(self.x1, self.y2, self.z2)

        normal.addData3f(
            Vec3(2 * self.x1 - 1, 2 * self.y1 - 1,
                 2 * self.z1 - 1).normalize())
        normal.addData3f(
            Vec3(2 * self.x2 - 1, 2 * self.y1 - 1,
                 2 * self.z1 - 1).normalize())
        normal.addData3f(
            Vec3(2 * self.x2 - 1, 2 * self.y2 - 1,
                 2 * self.z2 - 1).normalize())
        normal.addData3f(
            Vec3(2 * self.x1 - 1, 2 * self.y2 - 1,
                 2 * self.z2 - 1).normalize())

        #adding different colors to the vertex for visibility
        color.addData4f(self.r, self.g, self.b, self.a)
        color.addData4f(self.r, self.g, self.b, self.a)
        color.addData4f(self.r, self.g, self.b, self.a)
        color.addData4f(self.r, self.g, self.b, self.a)

        texcoord.addData2f(0.0, 1.0)
        texcoord.addData2f(0.0, 0.0)
        texcoord.addData2f(1.0, 0.0)
        texcoord.addData2f(1.0, 1.0)

        #quads arent directly supported by the Geom interface
        #you might be interested in the CardMaker class if you are
        #interested in rectangle though
        tri1 = GeomTriangles(Geom.UHStatic)
        tri2 = GeomTriangles(Geom.UHStatic)

        tri1.addVertex(0)
        tri1.addVertex(1)
        tri1.addVertex(3)

        tri2.addConsecutiveVertices(1, 3)

        tri1.closePrimitive()
        tri2.closePrimitive()

        square = Geom(vdata)
        square.addPrimitive(tri1)
        square.addPrimitive(tri2)
        #square.setIntoCollideMask(BitMask32.bit(1))

        self.squareNP = NodePath(GeomNode('square gnode'))
        self.squareNP.node().addGeom(square)
        self.squareNP.setTransparency(1)
        self.squareNP.setAlphaScale(.5)
        self.squareNP.setTwoSided(True)
        #squareNP.setCollideMask(BitMask32.bit(1))
        self.squareNP.reparentTo(self.parent)

        return self.squareNP
Ejemplo n.º 24
0
def drawBody(nodePath, vdata, pos, vecList, radius=1, keepDrawing=True,numVertices=8):

	circleGeom=Geom(vdata)

	vertWriter=GeomVertexWriter(vdata, "vertex")
	colorWriter=GeomVertexWriter(vdata, "color")
	normalWriter=GeomVertexWriter(vdata, "normal")
	drawReWriter=GeomVertexRewriter(vdata, "drawFlag")
	texReWriter=GeomVertexRewriter(vdata, "texcoord")
	
	
	startRow=vdata.getNumRows()
	vertWriter.setRow(startRow)
	colorWriter.setRow(startRow)
	normalWriter.setRow(startRow)
	
	sCoord=0

	if (startRow!=0):
		texReWriter.setRow(startRow-numVertices)
		sCoord=texReWriter.getData2f().getX()+1
		
		drawReWriter.setRow(startRow-numVertices)
		if(drawReWriter.getData1f()==False):
			sCoord-=1
	
	drawReWriter.setRow(startRow)
	texReWriter.setRow(startRow)	
	
	angleSlice=2*math.pi/numVertices
	currAngle=0
			
	#axisAdj=Mat4.rotateMat(45, axis)*Mat4.scaleMat(radius)*Mat4.translateMat(pos)

	perp1=vecList[1]
	perp2=vecList[2]	

	#vertex information is written here
	for i in range(numVertices):
		adjCircle=pos+(perp1*math.cos(currAngle)+perp2*math.sin(currAngle))*radius
		normal=perp1*math.cos(currAngle)+perp2*math.sin(currAngle)		
		normalWriter.addData3f(normal)
		vertWriter.addData3f(adjCircle)
		texReWriter.addData2f(sCoord,(i+0.001)/(numVertices-1))
		colorWriter.addData4f(0.5,0.5,0.5,1)
		drawReWriter.addData1f(keepDrawing)
		currAngle+=angleSlice

	
	drawReader=GeomVertexReader(vdata, "drawFlag")
	drawReader.setRow(startRow-numVertices)

	#we cant draw quads directly so we use Tristrips
	if (startRow!=0) & (drawReader.getData1f()!=False):
		lines=GeomTristrips(Geom.UHStatic)
		half=int(numVertices*0.5)
		for i in range(numVertices):
			lines.addVertex(i+startRow)
			if i< half:
				lines.addVertex(i+startRow-half)
			else:
				lines.addVertex(i+startRow-half-numVertices)

		lines.addVertex(startRow)
		lines.addVertex(startRow-half)
		lines.closePrimitive()
		lines.decompose()
		circleGeom.addPrimitive(lines)
		

		circleGeomNode=GeomNode("Debug")
		circleGeomNode.addGeom(circleGeom)

		#I accidentally made the front-face face inwards. Make reverse makes the tree render properly and
			#should cause any surprises to any poor programmer that tries to use this code
		circleGeomNode.setAttrib(CullFaceAttrib.makeReverse(),1)
		global numPrimitives
		numPrimitives+=numVertices*2
	
		nodePath.attachNewNode(circleGeomNode)