Ejemplo n.º 1
0
def test_is_timedelta64_ns_dtype():
    assert not com.is_timedelta64_ns_dtype(np.dtype('m8[ps]'))
    assert not com.is_timedelta64_ns_dtype(
        np.array([1, 2], dtype=np.timedelta64))

    assert com.is_timedelta64_ns_dtype(np.dtype('m8[ns]'))
    assert com.is_timedelta64_ns_dtype(np.array([1, 2], dtype='m8[ns]'))
Ejemplo n.º 2
0
    def astype(self, dtype, copy=True):
        # We handle
        #   --> timedelta64[ns]
        #   --> timedelta64
        # DatetimeLikeArrayMixin super call handles other cases
        dtype = pandas_dtype(dtype)

        if is_timedelta64_dtype(dtype) and not is_timedelta64_ns_dtype(dtype):
            # by pandas convention, converting to non-nano timedelta64
            #  returns an int64-dtyped array with ints representing multiples
            #  of the desired timedelta unit.  This is essentially division
            if self._hasnans:
                # avoid double-copying
                result = self._data.astype(dtype, copy=False)
                values = self._maybe_mask_results(result,
                                                  fill_value=None,
                                                  convert='float64')
                return values
            result = self._data.astype(dtype, copy=copy)
            return result.astype('i8')
        elif is_timedelta64_ns_dtype(dtype):
            if copy:
                return self.copy()
            return self
        return dtl.DatetimeLikeArrayMixin.astype(self, dtype, copy=copy)
Ejemplo n.º 3
0
 def astype(self, dtype, copy=True):
     dtype = pandas_dtype(dtype)
     if is_timedelta64_dtype(dtype) and not is_timedelta64_ns_dtype(dtype):
         # return an index (essentially this is division)
         result = self.values.astype(dtype, copy=copy)
         if self.hasnans:
             values = self._maybe_mask_results(result, convert='float64')
             return Index(values, name=self.name)
         return Index(result.astype('i8'), name=self.name)
     return super(TimedeltaIndex, self).astype(dtype, copy=copy)
Ejemplo n.º 4
0
 def astype(self, dtype, copy=True):
     dtype = pandas_dtype(dtype)
     if is_timedelta64_dtype(dtype) and not is_timedelta64_ns_dtype(dtype):
         # return an index (essentially this is division)
         result = self.values.astype(dtype, copy=copy)
         if self.hasnans:
             values = self._maybe_mask_results(result, convert='float64')
             return Index(values, name=self.name)
         return Index(result.astype('i8'), name=self.name)
     return super(TimedeltaIndex, self).astype(dtype, copy=copy)
Ejemplo n.º 5
0
    def reduce(self: T,
               func: Callable,
               ignore_failures: bool = False) -> tuple[T, np.ndarray]:
        """
        Apply reduction function column-wise, returning a single-row ArrayManager.

        Parameters
        ----------
        func : reduction function
        ignore_failures : bool, default False
            Whether to drop columns where func raises TypeError.

        Returns
        -------
        ArrayManager
        np.ndarray
            Indexer of column indices that are retained.
        """
        result_arrays: list[np.ndarray] = []
        result_indices: list[int] = []
        for i, arr in enumerate(self.arrays):
            try:
                res = func(arr, axis=0)
            except TypeError:
                if not ignore_failures:
                    raise
            else:
                # TODO NaT doesn't preserve dtype, so we need to ensure to create
                # a timedelta result array if original was timedelta
                # what if datetime results in timedelta? (eg std)
                if res is NaT and is_timedelta64_ns_dtype(arr.dtype):
                    result_arrays.append(
                        np.array(["NaT"], dtype="timedelta64[ns]"))
                else:
                    # error: Argument 1 to "append" of "list" has incompatible type
                    # "ExtensionArray"; expected "ndarray"
                    result_arrays.append(
                        sanitize_array([res], None)  # type: ignore[arg-type]
                    )
                result_indices.append(i)

        index = Index._simple_new(np.array([None],
                                           dtype=object))  # placeholder
        if ignore_failures:
            indexer = np.array(result_indices)
            columns = self.items[result_indices]
        else:
            indexer = np.arange(self.shape[0])
            columns = self.items

        # error: Argument 1 to "ArrayManager" has incompatible type "List[ndarray]";
        # expected "List[Union[ndarray, ExtensionArray]]"
        new_mgr = type(self)(result_arrays,
                             [index, columns])  # type: ignore[arg-type]
        return new_mgr, indexer
Ejemplo n.º 6
0
 def astype(self, dtype, copy=True):
     dtype = pandas_dtype(dtype)
     if is_timedelta64_dtype(dtype) and not is_timedelta64_ns_dtype(dtype):
         # Have to repeat the check for 'timedelta64' (not ns) dtype
         #  so that we can return a numeric index, since pandas will return
         #  a TimedeltaIndex when dtype='timedelta'
         result = self._data.astype(dtype, copy=copy)
         if self.hasnans:
             return Index(result, name=self.name)
         return Index(result.astype('i8'), name=self.name)
     return DatetimeIndexOpsMixin.astype(self, dtype, copy=copy)
Ejemplo n.º 7
0
 def astype(self, dtype, copy=True):
     dtype = pandas_dtype(dtype)
     if is_timedelta64_dtype(dtype) and not is_timedelta64_ns_dtype(dtype):
         # Have to repeat the check for 'timedelta64' (not ns) dtype
         #  so that we can return a numeric index, since pandas will return
         #  a TimedeltaIndex when dtype='timedelta'
         result = self._data.astype(dtype, copy=copy)
         if self.hasnans:
             return Index(result, name=self.name)
         return Index(result.astype("i8"), name=self.name)
     return DatetimeIndexOpsMixin.astype(self, dtype, copy=copy)
Ejemplo n.º 8
0
def maybe_castable(arr) -> bool:
    # return False to force a non-fastpath

    # check datetime64[ns]/timedelta64[ns] are valid
    # otherwise try to coerce
    kind = arr.dtype.kind
    if kind == "M":
        return is_datetime64_ns_dtype(arr.dtype)
    elif kind == "m":
        return is_timedelta64_ns_dtype(arr.dtype)

    return arr.dtype.name not in _POSSIBLY_CAST_DTYPES
Ejemplo n.º 9
0
    def astype(self, dtype, copy: bool = True):
        # We handle
        #   --> timedelta64[ns]
        #   --> timedelta64
        # DatetimeLikeArrayMixin super call handles other cases
        dtype = pandas_dtype(dtype)

        if is_timedelta64_dtype(dtype) and not is_timedelta64_ns_dtype(dtype):
            # by pandas convention, converting to non-nano timedelta64
            #  returns an int64-dtyped array with ints representing multiples
            #  of the desired timedelta unit.  This is essentially division
            if self._hasnans:
                # avoid double-copying
                result = self._data.astype(dtype, copy=False)
                return self._maybe_mask_results(
                    result, fill_value=None, convert="float64"
                )
            result = self._data.astype(dtype, copy=copy)
            return result.astype("i8")
        elif is_timedelta64_ns_dtype(dtype):
            if copy:
                return self.copy()
            return self
        return dtl.DatetimeLikeArrayMixin.astype(self, dtype, copy=copy)
Ejemplo n.º 10
0
    def test_is_timedelta(self):
        self.assertTrue(is_timedelta64_dtype('timedelta64'))
        self.assertTrue(is_timedelta64_dtype('timedelta64[ns]'))
        self.assertFalse(is_timedelta64_ns_dtype('timedelta64'))
        self.assertTrue(is_timedelta64_ns_dtype('timedelta64[ns]'))

        tdi = TimedeltaIndex([1e14, 2e14], dtype='timedelta64')
        self.assertTrue(is_timedelta64_dtype(tdi))
        self.assertTrue(is_timedelta64_ns_dtype(tdi))
        self.assertTrue(is_timedelta64_ns_dtype(tdi.astype('timedelta64[ns]')))

        # Conversion to Int64Index:
        self.assertFalse(is_timedelta64_ns_dtype(tdi.astype('timedelta64')))
        self.assertFalse(is_timedelta64_ns_dtype(tdi.astype('timedelta64[h]')))
Ejemplo n.º 11
0
    def test_is_timedelta(self):
        self.assertTrue(is_timedelta64_dtype('timedelta64'))
        self.assertTrue(is_timedelta64_dtype('timedelta64[ns]'))
        self.assertFalse(is_timedelta64_ns_dtype('timedelta64'))
        self.assertTrue(is_timedelta64_ns_dtype('timedelta64[ns]'))

        tdi = TimedeltaIndex([1e14, 2e14], dtype='timedelta64')
        self.assertTrue(is_timedelta64_dtype(tdi))
        self.assertTrue(is_timedelta64_ns_dtype(tdi))
        self.assertTrue(is_timedelta64_ns_dtype(tdi.astype('timedelta64[ns]')))

        # Conversion to Int64Index:
        self.assertFalse(is_timedelta64_ns_dtype(tdi.astype('timedelta64')))
        self.assertFalse(is_timedelta64_ns_dtype(tdi.astype('timedelta64[h]')))
Ejemplo n.º 12
0
    def test_is_timedelta(self):
        assert is_timedelta64_dtype('timedelta64')
        assert is_timedelta64_dtype('timedelta64[ns]')
        assert not is_timedelta64_ns_dtype('timedelta64')
        assert is_timedelta64_ns_dtype('timedelta64[ns]')

        tdi = TimedeltaIndex([1e14, 2e14], dtype='timedelta64')
        assert is_timedelta64_dtype(tdi)
        assert is_timedelta64_ns_dtype(tdi)
        assert is_timedelta64_ns_dtype(tdi.astype('timedelta64[ns]'))

        # Conversion to Int64Index:
        assert not is_timedelta64_ns_dtype(tdi.astype('timedelta64'))
        assert not is_timedelta64_ns_dtype(tdi.astype('timedelta64[h]'))
Ejemplo n.º 13
0
    def test_is_timedelta(self):
        assert is_timedelta64_dtype('timedelta64')
        assert is_timedelta64_dtype('timedelta64[ns]')
        assert not is_timedelta64_ns_dtype('timedelta64')
        assert is_timedelta64_ns_dtype('timedelta64[ns]')

        tdi = TimedeltaIndex([1e14, 2e14], dtype='timedelta64')
        assert is_timedelta64_dtype(tdi)
        assert is_timedelta64_ns_dtype(tdi)
        assert is_timedelta64_ns_dtype(tdi.astype('timedelta64[ns]'))

        # Conversion to Int64Index:
        assert not is_timedelta64_ns_dtype(tdi.astype('timedelta64'))
        assert not is_timedelta64_ns_dtype(tdi.astype('timedelta64[h]'))
Ejemplo n.º 14
0
    def astype(self, dtype, copy=True):
        dtype = np.dtype(dtype)

        if is_object_dtype(dtype):
            return self.asobject
        elif is_timedelta64_ns_dtype(dtype):
            if copy is True:
                return self.copy()
            return self
        elif is_timedelta64_dtype(dtype):
            # return an index (essentially this is division)
            result = self.values.astype(dtype, copy=copy)
            if self.hasnans:
                return Index(self._maybe_mask_results(result,
                                                      convert='float64'),
                             name=self.name)
            return Index(result.astype('i8'), name=self.name)
        elif is_integer_dtype(dtype):
            return Index(self.values.astype('i8', copy=copy), dtype='i8',
                         name=self.name)
        raise ValueError('Cannot cast TimedeltaIndex to dtype %s' % dtype)
Ejemplo n.º 15
0
    def astype(self, dtype, copy=True):
        dtype = np.dtype(dtype)

        if is_object_dtype(dtype):
            return self.asobject
        elif is_timedelta64_ns_dtype(dtype):
            if copy is True:
                return self.copy()
            return self
        elif is_timedelta64_dtype(dtype):
            # return an index (essentially this is division)
            result = self.values.astype(dtype, copy=copy)
            if self.hasnans:
                return Index(self._maybe_mask_results(result,
                                                      convert='float64'),
                             name=self.name)
            return Index(result.astype('i8'), name=self.name)
        elif is_integer_dtype(dtype):
            return Index(self.values.astype('i8', copy=copy), dtype='i8',
                         name=self.name)
        raise ValueError('Cannot cast TimedeltaIndex to dtype %s' % dtype)
Ejemplo n.º 16
0
    def array(self) -> ExtensionArray:
        """
        The ExtensionArray of the data backing this Series or Index.

        .. versionadded:: 0.24.0

        Returns
        -------
        ExtensionArray
            An ExtensionArray of the values stored within. For extension
            types, this is the actual array. For NumPy native types, this
            is a thin (no copy) wrapper around :class:`numpy.ndarray`.

            ``.array`` differs ``.values`` which may require converting the
            data to a different form.

        See Also
        --------
        Index.to_numpy : Similar method that always returns a NumPy array.
        Series.to_numpy : Similar method that always returns a NumPy array.

        Notes
        -----
        This table lays out the different array types for each extension
        dtype within pandas.

        ================== =============================
        dtype              array type
        ================== =============================
        category           Categorical
        period             PeriodArray
        interval           IntervalArray
        IntegerNA          IntegerArray
        datetime64[ns, tz] DatetimeArray
        ================== =============================

        For any 3rd-party extension types, the array type will be an
        ExtensionArray.

        For all remaining dtypes ``.array`` will be a
        :class:`arrays.NumpyExtensionArray` wrapping the actual ndarray
        stored within. If you absolutely need a NumPy array (possibly with
        copying / coercing data), then use :meth:`Series.to_numpy` instead.

        Examples
        --------

        For regular NumPy types like int, and float, a PandasArray
        is returned.

        >>> pd.Series([1, 2, 3]).array
        <PandasArray>
        [1, 2, 3]
        Length: 3, dtype: int64

        For extension types, like Categorical, the actual ExtensionArray
        is returned

        >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a']))
        >>> ser.array
        [a, b, a]
        Categories (2, object): [a, b]
        """
        # As a mixin, we depend on the mixing class having _values.
        # Special mixin syntax may be developed in the future:
        # https://github.com/python/typing/issues/246
        result = self._values  # type: ignore

        if is_datetime64_ns_dtype(result.dtype):
            from pandas.arrays import DatetimeArray
            result = DatetimeArray(result)
        elif is_timedelta64_ns_dtype(result.dtype):
            from pandas.arrays import TimedeltaArray
            result = TimedeltaArray(result)

        elif not is_extension_array_dtype(result.dtype):
            from pandas.core.arrays.numpy_ import PandasArray
            result = PandasArray(result)

        return result
Ejemplo n.º 17
0
def array(
    data: Union[Sequence[object], AnyArrayLike],
    dtype: Optional[Dtype] = None,
    copy: bool = True,
) -> "ExtensionArray":
    """
    Create an array.

    .. versionadded:: 0.24.0

    Parameters
    ----------
    data : Sequence of objects
        The scalars inside `data` should be instances of the
        scalar type for `dtype`. It's expected that `data`
        represents a 1-dimensional array of data.

        When `data` is an Index or Series, the underlying array
        will be extracted from `data`.

    dtype : str, np.dtype, or ExtensionDtype, optional
        The dtype to use for the array. This may be a NumPy
        dtype or an extension type registered with pandas using
        :meth:`pandas.api.extensions.register_extension_dtype`.

        If not specified, there are two possibilities:

        1. When `data` is a :class:`Series`, :class:`Index`, or
           :class:`ExtensionArray`, the `dtype` will be taken
           from the data.
        2. Otherwise, pandas will attempt to infer the `dtype`
           from the data.

        Note that when `data` is a NumPy array, ``data.dtype`` is
        *not* used for inferring the array type. This is because
        NumPy cannot represent all the types of data that can be
        held in extension arrays.

        Currently, pandas will infer an extension dtype for sequences of

        ============================== =====================================
        Scalar Type                    Array Type
        ============================== =====================================
        :class:`pandas.Interval`       :class:`pandas.arrays.IntervalArray`
        :class:`pandas.Period`         :class:`pandas.arrays.PeriodArray`
        :class:`datetime.datetime`     :class:`pandas.arrays.DatetimeArray`
        :class:`datetime.timedelta`    :class:`pandas.arrays.TimedeltaArray`
        :class:`int`                   :class:`pandas.arrays.IntegerArray`
        :class:`str`                   :class:`pandas.arrays.StringArray`
        :class:`bool`                  :class:`pandas.arrays.BooleanArray`
        ============================== =====================================

        For all other cases, NumPy's usual inference rules will be used.

        .. versionchanged:: 1.0.0

           Pandas infers nullable-integer dtype for integer data,
           string dtype for string data, and nullable-boolean dtype
           for boolean data.

    copy : bool, default True
        Whether to copy the data, even if not necessary. Depending
        on the type of `data`, creating the new array may require
        copying data, even if ``copy=False``.

    Returns
    -------
    ExtensionArray
        The newly created array.

    Raises
    ------
    ValueError
        When `data` is not 1-dimensional.

    See Also
    --------
    numpy.array : Construct a NumPy array.
    Series : Construct a pandas Series.
    Index : Construct a pandas Index.
    arrays.PandasArray : ExtensionArray wrapping a NumPy array.
    Series.array : Extract the array stored within a Series.

    Notes
    -----
    Omitting the `dtype` argument means pandas will attempt to infer the
    best array type from the values in the data. As new array types are
    added by pandas and 3rd party libraries, the "best" array type may
    change. We recommend specifying `dtype` to ensure that

    1. the correct array type for the data is returned
    2. the returned array type doesn't change as new extension types
       are added by pandas and third-party libraries

    Additionally, if the underlying memory representation of the returned
    array matters, we recommend specifying the `dtype` as a concrete object
    rather than a string alias or allowing it to be inferred. For example,
    a future version of pandas or a 3rd-party library may include a
    dedicated ExtensionArray for string data. In this event, the following
    would no longer return a :class:`arrays.PandasArray` backed by a NumPy
    array.

    >>> pd.array(['a', 'b'], dtype=str)
    <PandasArray>
    ['a', 'b']
    Length: 2, dtype: str32

    This would instead return the new ExtensionArray dedicated for string
    data. If you really need the new array to be backed by a  NumPy array,
    specify that in the dtype.

    >>> pd.array(['a', 'b'], dtype=np.dtype("<U1"))
    <PandasArray>
    ['a', 'b']
    Length: 2, dtype: str32

    Finally, Pandas has arrays that mostly overlap with NumPy

      * :class:`arrays.DatetimeArray`
      * :class:`arrays.TimedeltaArray`

    When data with a ``datetime64[ns]`` or ``timedelta64[ns]`` dtype is
    passed, pandas will always return a ``DatetimeArray`` or ``TimedeltaArray``
    rather than a ``PandasArray``. This is for symmetry with the case of
    timezone-aware data, which NumPy does not natively support.

    >>> pd.array(['2015', '2016'], dtype='datetime64[ns]')
    <DatetimeArray>
    ['2015-01-01 00:00:00', '2016-01-01 00:00:00']
    Length: 2, dtype: datetime64[ns]

    >>> pd.array(["1H", "2H"], dtype='timedelta64[ns]')
    <TimedeltaArray>
    ['0 days 01:00:00', '0 days 02:00:00']
    Length: 2, dtype: timedelta64[ns]

    Examples
    --------
    If a dtype is not specified, pandas will infer the best dtype from the values.
    See the description of `dtype` for the types pandas infers for.

    >>> pd.array([1, 2])
    <IntegerArray>
    [1, 2]
    Length: 2, dtype: Int64

    >>> pd.array([1, 2, np.nan])
    <IntegerArray>
    [1, 2, <NA>]
    Length: 3, dtype: Int64

    >>> pd.array(["a", None, "c"])
    <StringArray>
    ['a', <NA>, 'c']
    Length: 3, dtype: string

    >>> pd.array([pd.Period('2000', freq="D"), pd.Period("2000", freq="D")])
    <PeriodArray>
    ['2000-01-01', '2000-01-01']
    Length: 2, dtype: period[D]

    You can use the string alias for `dtype`

    >>> pd.array(['a', 'b', 'a'], dtype='category')
    [a, b, a]
    Categories (2, object): [a, b]

    Or specify the actual dtype

    >>> pd.array(['a', 'b', 'a'],
    ...          dtype=pd.CategoricalDtype(['a', 'b', 'c'], ordered=True))
    [a, b, a]
    Categories (3, object): [a < b < c]

    If pandas does not infer a dedicated extension type a
    :class:`arrays.PandasArray` is returned.

    >>> pd.array([1.1, 2.2])
    <PandasArray>
    [1.1, 2.2]
    Length: 2, dtype: float64

    As mentioned in the "Notes" section, new extension types may be added
    in the future (by pandas or 3rd party libraries), causing the return
    value to no longer be a :class:`arrays.PandasArray`. Specify the `dtype`
    as a NumPy dtype if you need to ensure there's no future change in
    behavior.

    >>> pd.array([1, 2], dtype=np.dtype("int32"))
    <PandasArray>
    [1, 2]
    Length: 2, dtype: int32

    `data` must be 1-dimensional. A ValueError is raised when the input
    has the wrong dimensionality.

    >>> pd.array(1)
    Traceback (most recent call last):
      ...
    ValueError: Cannot pass scalar '1' to 'pandas.array'.
    """
    from pandas.core.arrays import (
        period_array,
        BooleanArray,
        IntegerArray,
        IntervalArray,
        PandasArray,
        DatetimeArray,
        TimedeltaArray,
        StringArray,
    )

    if lib.is_scalar(data):
        msg = f"Cannot pass scalar '{data}' to 'pandas.array'."
        raise ValueError(msg)

    if dtype is None and isinstance(
            data, (ABCSeries, ABCIndexClass, ABCExtensionArray)):
        dtype = data.dtype

    data = extract_array(data, extract_numpy=True)

    # this returns None for not-found dtypes.
    if isinstance(dtype, str):
        dtype = registry.find(dtype) or dtype

    if is_extension_array_dtype(dtype):
        cls = cast(ExtensionDtype, dtype).construct_array_type()
        return cls._from_sequence(data, dtype=dtype, copy=copy)

    if dtype is None:
        inferred_dtype = lib.infer_dtype(data, skipna=True)
        if inferred_dtype == "period":
            try:
                return period_array(data, copy=copy)
            except IncompatibleFrequency:
                # We may have a mixture of frequencies.
                # We choose to return an ndarray, rather than raising.
                pass
        elif inferred_dtype == "interval":
            try:
                return IntervalArray(data, copy=copy)
            except ValueError:
                # We may have a mixture of `closed` here.
                # We choose to return an ndarray, rather than raising.
                pass

        elif inferred_dtype.startswith("datetime"):
            # datetime, datetime64
            try:
                return DatetimeArray._from_sequence(data, copy=copy)
            except ValueError:
                # Mixture of timezones, fall back to PandasArray
                pass

        elif inferred_dtype.startswith("timedelta"):
            # timedelta, timedelta64
            return TimedeltaArray._from_sequence(data, copy=copy)

        elif inferred_dtype == "string":
            return StringArray._from_sequence(data, copy=copy)

        elif inferred_dtype == "integer":
            return IntegerArray._from_sequence(data, copy=copy)

        elif inferred_dtype == "boolean":
            return BooleanArray._from_sequence(data, copy=copy)

    # Pandas overrides NumPy for
    #   1. datetime64[ns]
    #   2. timedelta64[ns]
    # so that a DatetimeArray is returned.
    if is_datetime64_ns_dtype(dtype):
        return DatetimeArray._from_sequence(data, dtype=dtype, copy=copy)
    elif is_timedelta64_ns_dtype(dtype):
        return TimedeltaArray._from_sequence(data, dtype=dtype, copy=copy)

    result = PandasArray._from_sequence(data, dtype=dtype, copy=copy)
    return result
Ejemplo n.º 18
0
    def array(self):
        # type: () -> ExtensionArray
        """
        The ExtensionArray of the data backing this Series or Index.

        .. versionadded:: 0.24.0

        Returns
        -------
        ExtensionArray
            An ExtensionArray of the values stored within. For extension
            types, this is the actual array. For NumPy native types, this
            is a thin (no copy) wrapper around :class:`numpy.ndarray`.

            ``.array`` differs ``.values`` which may require converting the
            data to a different form.

        See Also
        --------
        Index.to_numpy : Similar method that always returns a NumPy array.
        Series.to_numpy : Similar method that always returns a NumPy array.

        Notes
        -----
        This table lays out the different array types for each extension
        dtype within pandas.

        ================== =============================
        dtype              array type
        ================== =============================
        category           Categorical
        period             PeriodArray
        interval           IntervalArray
        IntegerNA          IntegerArray
        datetime64[ns, tz] DatetimeArray
        ================== =============================

        For any 3rd-party extension types, the array type will be an
        ExtensionArray.

        For all remaining dtypes ``.array`` will be a
        :class:`arrays.NumpyExtensionArray` wrapping the actual ndarray
        stored within. If you absolutely need a NumPy array (possibly with
        copying / coercing data), then use :meth:`Series.to_numpy` instead.

        Examples
        --------

        For regular NumPy types like int, and float, a PandasArray
        is returned.

        >>> pd.Series([1, 2, 3]).array
        <PandasArray>
        [1, 2, 3]
        Length: 3, dtype: int64

        For extension types, like Categorical, the actual ExtensionArray
        is returned

        >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a']))
        >>> ser.array
        [a, b, a]
        Categories (2, object): [a, b]
        """
        result = self._values

        if is_datetime64_ns_dtype(result.dtype):
            from pandas.arrays import DatetimeArray
            result = DatetimeArray(result)
        elif is_timedelta64_ns_dtype(result.dtype):
            from pandas.arrays import TimedeltaArray
            result = TimedeltaArray(result)

        elif not is_extension_array_dtype(result.dtype):
            from pandas.core.arrays.numpy_ import PandasArray
            result = PandasArray(result)

        return result
Ejemplo n.º 19
0
def array(data,         # type: Sequence[object]
          dtype=None,   # type: Optional[Union[str, np.dtype, ExtensionDtype]]
          copy=True,    # type: bool
          ):
    # type: (...) -> ExtensionArray
    """
    Create an array.

    .. versionadded:: 0.24.0

    Parameters
    ----------
    data : Sequence of objects
        The scalars inside `data` should be instances of the
        scalar type for `dtype`. It's expected that `data`
        represents a 1-dimensional array of data.

        When `data` is an Index or Series, the underlying array
        will be extracted from `data`.

    dtype : str, np.dtype, or ExtensionDtype, optional
        The dtype to use for the array. This may be a NumPy
        dtype or an extension type registered with pandas using
        :meth:`pandas.api.extensions.register_extension_dtype`.

        If not specified, there are two possibilities:

        1. When `data` is a :class:`Series`, :class:`Index`, or
           :class:`ExtensionArray`, the `dtype` will be taken
           from the data.
        2. Otherwise, pandas will attempt to infer the `dtype`
           from the data.

        Note that when `data` is a NumPy array, ``data.dtype`` is
        *not* used for inferring the array type. This is because
        NumPy cannot represent all the types of data that can be
        held in extension arrays.

        Currently, pandas will infer an extension dtype for sequences of

        ============================== =====================================
        Scalar Type                    Array Type
        ============================== =====================================
        :class:`pandas.Interval`       :class:`pandas.arrays.IntervalArray`
        :class:`pandas.Period`         :class:`pandas.arrays.PeriodArray`
        :class:`datetime.datetime`     :class:`pandas.arrays.DatetimeArray`
        :class:`datetime.timedelta`    :class:`pandas.arrays.TimedeltaArray`
        ============================== =====================================

        For all other cases, NumPy's usual inference rules will be used.

    copy : bool, default True
        Whether to copy the data, even if not necessary. Depending
        on the type of `data`, creating the new array may require
        copying data, even if ``copy=False``.

    Returns
    -------
    ExtensionArray
        The newly created array.

    Raises
    ------
    ValueError
        When `data` is not 1-dimensional.

    See Also
    --------
    numpy.array : Construct a NumPy array.
    Series : Construct a pandas Series.
    Index : Construct a pandas Index.
    arrays.PandasArray : ExtensionArray wrapping a NumPy array.
    Series.array : Extract the array stored within a Series.

    Notes
    -----
    Omitting the `dtype` argument means pandas will attempt to infer the
    best array type from the values in the data. As new array types are
    added by pandas and 3rd party libraries, the "best" array type may
    change. We recommend specifying `dtype` to ensure that

    1. the correct array type for the data is returned
    2. the returned array type doesn't change as new extension types
       are added by pandas and third-party libraries

    Additionally, if the underlying memory representation of the returned
    array matters, we recommend specifying the `dtype` as a concrete object
    rather than a string alias or allowing it to be inferred. For example,
    a future version of pandas or a 3rd-party library may include a
    dedicated ExtensionArray for string data. In this event, the following
    would no longer return a :class:`arrays.PandasArray` backed by a NumPy
    array.

    >>> pd.array(['a', 'b'], dtype=str)
    <PandasArray>
    ['a', 'b']
    Length: 2, dtype: str32

    This would instead return the new ExtensionArray dedicated for string
    data. If you really need the new array to be backed by a  NumPy array,
    specify that in the dtype.

    >>> pd.array(['a', 'b'], dtype=np.dtype("<U1"))
    <PandasArray>
    ['a', 'b']
    Length: 2, dtype: str32

    Or use the dedicated constructor for the array you're expecting, and
    wrap that in a PandasArray

    >>> pd.array(np.array(['a', 'b'], dtype='<U1'))
    <PandasArray>
    ['a', 'b']
    Length: 2, dtype: str32

    Finally, Pandas has arrays that mostly overlap with NumPy

      * :class:`arrays.DatetimeArray`
      * :class:`arrays.TimedeltaArray`

    When data with a ``datetime64[ns]`` or ``timedelta64[ns]`` dtype is
    passed, pandas will always return a ``DatetimeArray`` or ``TimedeltaArray``
    rather than a ``PandasArray``. This is for symmetry with the case of
    timezone-aware data, which NumPy does not natively support.

    >>> pd.array(['2015', '2016'], dtype='datetime64[ns]')
    <DatetimeArray>
    ['2015-01-01 00:00:00', '2016-01-01 00:00:00']
    Length: 2, dtype: datetime64[ns]

    >>> pd.array(["1H", "2H"], dtype='timedelta64[ns]')
    <TimedeltaArray>
    ['01:00:00', '02:00:00']
    Length: 2, dtype: timedelta64[ns]

    Examples
    --------
    If a dtype is not specified, `data` is passed through to
    :meth:`numpy.array`, and a :class:`arrays.PandasArray` is returned.

    >>> pd.array([1, 2])
    <PandasArray>
    [1, 2]
    Length: 2, dtype: int64

    Or the NumPy dtype can be specified

    >>> pd.array([1, 2], dtype=np.dtype("int32"))
    <PandasArray>
    [1, 2]
    Length: 2, dtype: int32

    You can use the string alias for `dtype`

    >>> pd.array(['a', 'b', 'a'], dtype='category')
    [a, b, a]
    Categories (2, object): [a, b]

    Or specify the actual dtype

    >>> pd.array(['a', 'b', 'a'],
    ...          dtype=pd.CategoricalDtype(['a', 'b', 'c'], ordered=True))
    [a, b, a]
    Categories (3, object): [a < b < c]

    Because omitting the `dtype` passes the data through to NumPy,
    a mixture of valid integers and NA will return a floating-point
    NumPy array.

    >>> pd.array([1, 2, np.nan])
    <PandasArray>
    [1.0,  2.0, nan]
    Length: 3, dtype: float64

    To use pandas' nullable :class:`pandas.arrays.IntegerArray`, specify
    the dtype:

    >>> pd.array([1, 2, np.nan], dtype='Int64')
    <IntegerArray>
    [1, 2, NaN]
    Length: 3, dtype: Int64

    Pandas will infer an ExtensionArray for some types of data:

    >>> pd.array([pd.Period('2000', freq="D"), pd.Period("2000", freq="D")])
    <PeriodArray>
    ['2000-01-01', '2000-01-01']
    Length: 2, dtype: period[D]

    `data` must be 1-dimensional. A ValueError is raised when the input
    has the wrong dimensionality.

    >>> pd.array(1)
    Traceback (most recent call last):
      ...
    ValueError: Cannot pass scalar '1' to 'pandas.array'.
    """
    from pandas.core.arrays import (
        period_array, ExtensionArray, IntervalArray, PandasArray,
        DatetimeArray,
        TimedeltaArray,
    )
    from pandas.core.internals.arrays import extract_array

    if lib.is_scalar(data):
        msg = (
            "Cannot pass scalar '{}' to 'pandas.array'."
        )
        raise ValueError(msg.format(data))

    data = extract_array(data, extract_numpy=True)

    if dtype is None and isinstance(data, ExtensionArray):
        dtype = data.dtype

    # this returns None for not-found dtypes.
    if isinstance(dtype, compat.string_types):
        dtype = registry.find(dtype) or dtype

    if is_extension_array_dtype(dtype):
        cls = dtype.construct_array_type()
        return cls._from_sequence(data, dtype=dtype, copy=copy)

    if dtype is None:
        inferred_dtype = lib.infer_dtype(data, skipna=False)
        if inferred_dtype == 'period':
            try:
                return period_array(data, copy=copy)
            except tslibs.IncompatibleFrequency:
                # We may have a mixture of frequencies.
                # We choose to return an ndarray, rather than raising.
                pass
        elif inferred_dtype == 'interval':
            try:
                return IntervalArray(data, copy=copy)
            except ValueError:
                # We may have a mixture of `closed` here.
                # We choose to return an ndarray, rather than raising.
                pass

        elif inferred_dtype.startswith('datetime'):
            # datetime, datetime64
            try:
                return DatetimeArray._from_sequence(data, copy=copy)
            except ValueError:
                # Mixture of timezones, fall back to PandasArray
                pass

        elif inferred_dtype.startswith('timedelta'):
            # timedelta, timedelta64
            return TimedeltaArray._from_sequence(data, copy=copy)

        # TODO(BooleanArray): handle this type

    # Pandas overrides NumPy for
    #   1. datetime64[ns]
    #   2. timedelta64[ns]
    # so that a DatetimeArray is returned.
    if is_datetime64_ns_dtype(dtype):
        return DatetimeArray._from_sequence(data, dtype=dtype, copy=copy)
    elif is_timedelta64_ns_dtype(dtype):
        return TimedeltaArray._from_sequence(data, dtype=dtype, copy=copy)

    result = PandasArray._from_sequence(data, dtype=dtype, copy=copy)
    return result
Ejemplo n.º 20
0
def test_is_timedelta64_ns_dtype():
    assert not com.is_timedelta64_ns_dtype(np.dtype("m8[ps]"))
    assert not com.is_timedelta64_ns_dtype(np.array([1, 2], dtype=np.timedelta64))

    assert com.is_timedelta64_ns_dtype(np.dtype("m8[ns]"))
    assert com.is_timedelta64_ns_dtype(np.array([1, 2], dtype="m8[ns]"))
Ejemplo n.º 21
0
def array(data: Sequence[object],
          dtype: Optional[Union[str, np.dtype, ExtensionDtype]] = None,
          copy: bool = True,
          ) -> ABCExtensionArray:
    """
    Create an array.

    .. versionadded:: 0.24.0

    Parameters
    ----------
    data : Sequence of objects
        The scalars inside `data` should be instances of the
        scalar type for `dtype`. It's expected that `data`
        represents a 1-dimensional array of data.

        When `data` is an Index or Series, the underlying array
        will be extracted from `data`.

    dtype : str, np.dtype, or ExtensionDtype, optional
        The dtype to use for the array. This may be a NumPy
        dtype or an extension type registered with pandas using
        :meth:`pandas.api.extensions.register_extension_dtype`.

        If not specified, there are two possibilities:

        1. When `data` is a :class:`Series`, :class:`Index`, or
           :class:`ExtensionArray`, the `dtype` will be taken
           from the data.
        2. Otherwise, pandas will attempt to infer the `dtype`
           from the data.

        Note that when `data` is a NumPy array, ``data.dtype`` is
        *not* used for inferring the array type. This is because
        NumPy cannot represent all the types of data that can be
        held in extension arrays.

        Currently, pandas will infer an extension dtype for sequences of

        ============================== =====================================
        Scalar Type                    Array Type
        ============================== =====================================
        :class:`pandas.Interval`       :class:`pandas.arrays.IntervalArray`
        :class:`pandas.Period`         :class:`pandas.arrays.PeriodArray`
        :class:`datetime.datetime`     :class:`pandas.arrays.DatetimeArray`
        :class:`datetime.timedelta`    :class:`pandas.arrays.TimedeltaArray`
        ============================== =====================================

        For all other cases, NumPy's usual inference rules will be used.

    copy : bool, default True
        Whether to copy the data, even if not necessary. Depending
        on the type of `data`, creating the new array may require
        copying data, even if ``copy=False``.

    Returns
    -------
    ExtensionArray
        The newly created array.

    Raises
    ------
    ValueError
        When `data` is not 1-dimensional.

    See Also
    --------
    numpy.array : Construct a NumPy array.
    Series : Construct a pandas Series.
    Index : Construct a pandas Index.
    arrays.PandasArray : ExtensionArray wrapping a NumPy array.
    Series.array : Extract the array stored within a Series.

    Notes
    -----
    Omitting the `dtype` argument means pandas will attempt to infer the
    best array type from the values in the data. As new array types are
    added by pandas and 3rd party libraries, the "best" array type may
    change. We recommend specifying `dtype` to ensure that

    1. the correct array type for the data is returned
    2. the returned array type doesn't change as new extension types
       are added by pandas and third-party libraries

    Additionally, if the underlying memory representation of the returned
    array matters, we recommend specifying the `dtype` as a concrete object
    rather than a string alias or allowing it to be inferred. For example,
    a future version of pandas or a 3rd-party library may include a
    dedicated ExtensionArray for string data. In this event, the following
    would no longer return a :class:`arrays.PandasArray` backed by a NumPy
    array.

    >>> pd.array(['a', 'b'], dtype=str)
    <PandasArray>
    ['a', 'b']
    Length: 2, dtype: str32

    This would instead return the new ExtensionArray dedicated for string
    data. If you really need the new array to be backed by a  NumPy array,
    specify that in the dtype.

    >>> pd.array(['a', 'b'], dtype=np.dtype("<U1"))
    <PandasArray>
    ['a', 'b']
    Length: 2, dtype: str32

    Or use the dedicated constructor for the array you're expecting, and
    wrap that in a PandasArray

    >>> pd.array(np.array(['a', 'b'], dtype='<U1'))
    <PandasArray>
    ['a', 'b']
    Length: 2, dtype: str32

    Finally, Pandas has arrays that mostly overlap with NumPy

      * :class:`arrays.DatetimeArray`
      * :class:`arrays.TimedeltaArray`

    When data with a ``datetime64[ns]`` or ``timedelta64[ns]`` dtype is
    passed, pandas will always return a ``DatetimeArray`` or ``TimedeltaArray``
    rather than a ``PandasArray``. This is for symmetry with the case of
    timezone-aware data, which NumPy does not natively support.

    >>> pd.array(['2015', '2016'], dtype='datetime64[ns]')
    <DatetimeArray>
    ['2015-01-01 00:00:00', '2016-01-01 00:00:00']
    Length: 2, dtype: datetime64[ns]

    >>> pd.array(["1H", "2H"], dtype='timedelta64[ns]')
    <TimedeltaArray>
    ['01:00:00', '02:00:00']
    Length: 2, dtype: timedelta64[ns]

    Examples
    --------
    If a dtype is not specified, `data` is passed through to
    :meth:`numpy.array`, and a :class:`arrays.PandasArray` is returned.

    >>> pd.array([1, 2])
    <PandasArray>
    [1, 2]
    Length: 2, dtype: int64

    Or the NumPy dtype can be specified

    >>> pd.array([1, 2], dtype=np.dtype("int32"))
    <PandasArray>
    [1, 2]
    Length: 2, dtype: int32

    You can use the string alias for `dtype`

    >>> pd.array(['a', 'b', 'a'], dtype='category')
    [a, b, a]
    Categories (2, object): [a, b]

    Or specify the actual dtype

    >>> pd.array(['a', 'b', 'a'],
    ...          dtype=pd.CategoricalDtype(['a', 'b', 'c'], ordered=True))
    [a, b, a]
    Categories (3, object): [a < b < c]

    Because omitting the `dtype` passes the data through to NumPy,
    a mixture of valid integers and NA will return a floating-point
    NumPy array.

    >>> pd.array([1, 2, np.nan])
    <PandasArray>
    [1.0,  2.0, nan]
    Length: 3, dtype: float64

    To use pandas' nullable :class:`pandas.arrays.IntegerArray`, specify
    the dtype:

    >>> pd.array([1, 2, np.nan], dtype='Int64')
    <IntegerArray>
    [1, 2, NaN]
    Length: 3, dtype: Int64

    Pandas will infer an ExtensionArray for some types of data:

    >>> pd.array([pd.Period('2000', freq="D"), pd.Period("2000", freq="D")])
    <PeriodArray>
    ['2000-01-01', '2000-01-01']
    Length: 2, dtype: period[D]

    `data` must be 1-dimensional. A ValueError is raised when the input
    has the wrong dimensionality.

    >>> pd.array(1)
    Traceback (most recent call last):
      ...
    ValueError: Cannot pass scalar '1' to 'pandas.array'.
    """
    from pandas.core.arrays import (
        period_array, ExtensionArray, IntervalArray, PandasArray,
        DatetimeArray,
        TimedeltaArray,
    )
    from pandas.core.internals.arrays import extract_array

    if lib.is_scalar(data):
        msg = (
            "Cannot pass scalar '{}' to 'pandas.array'."
        )
        raise ValueError(msg.format(data))

    data = extract_array(data, extract_numpy=True)

    if dtype is None and isinstance(data, ExtensionArray):
        dtype = data.dtype

    # this returns None for not-found dtypes.
    if isinstance(dtype, str):
        dtype = registry.find(dtype) or dtype

    if is_extension_array_dtype(dtype):
        cls = dtype.construct_array_type()
        return cls._from_sequence(data, dtype=dtype, copy=copy)

    if dtype is None:
        inferred_dtype = lib.infer_dtype(data, skipna=False)
        if inferred_dtype == 'period':
            try:
                return period_array(data, copy=copy)
            except tslibs.IncompatibleFrequency:
                # We may have a mixture of frequencies.
                # We choose to return an ndarray, rather than raising.
                pass
        elif inferred_dtype == 'interval':
            try:
                return IntervalArray(data, copy=copy)
            except ValueError:
                # We may have a mixture of `closed` here.
                # We choose to return an ndarray, rather than raising.
                pass

        elif inferred_dtype.startswith('datetime'):
            # datetime, datetime64
            try:
                return DatetimeArray._from_sequence(data, copy=copy)
            except ValueError:
                # Mixture of timezones, fall back to PandasArray
                pass

        elif inferred_dtype.startswith('timedelta'):
            # timedelta, timedelta64
            return TimedeltaArray._from_sequence(data, copy=copy)

        # TODO(BooleanArray): handle this type

    # Pandas overrides NumPy for
    #   1. datetime64[ns]
    #   2. timedelta64[ns]
    # so that a DatetimeArray is returned.
    if is_datetime64_ns_dtype(dtype):
        return DatetimeArray._from_sequence(data, dtype=dtype, copy=copy)
    elif is_timedelta64_ns_dtype(dtype):
        return TimedeltaArray._from_sequence(data, dtype=dtype, copy=copy)

    result = PandasArray._from_sequence(data, dtype=dtype, copy=copy)
    return result