Ejemplo n.º 1
0
def get_data(assets, start_date):
    prices = {}
    for asset, ticker in assets.items():
        prices[asset] = get_close_price(ticker, start_date)

    df = DataFrame(prices)
    return df
Ejemplo n.º 2
0
def Econ_env(YYYY, m, dd):	
	start_date = datetime.datetime(YYYY, m, dd)
	GDP = DataReader('GDP', "fred", start=start_date)
	sp500 = DataReader('^GSPC', "yahoo", start=start_date)

	Array = DataFrame({'S&P':sp500["Adj Close"]})

	return Array
Ejemplo n.º 3
0
def main():
	# define the desired portfolio characteristics
	std_max = 100	# maximum standard deviation 
	MAX_ITERS = 100 	# max number of iterations
	lam = .94  		# exponential decay number 

	assets = (['GOOGLE', 'APPLE', 'CAT', 'SPDR_GOLD', 'OIL',
	 'NATURAL_GAS', 'USD', 'GOLDMANSACHS', 'DOMINION'])

	# Pull data from Yahoo! Finance 
	GOOG= Stock_Close('GOOG', 2010, 1, 1)
	AAPL = Stock_Close('AAPL', 2010,1, 1)
	SP500 = Stock_Close('^GSPC', 2010, 1, 1)
	CAT = Stock_Close('CAT', 2010, 1, 1)
	GOLD = Stock_Close('GLD', 2010, 1, 1)
	GAS = Stock_Close('GAZ', 2010, 1, 1)
	OIL = Stock_Close('OIL', 2010, 1, 1)
	GS = Stock_Close('GS', 2010, 1, 1)
	DOM = Stock_Close('D', 2010, 1, 1)
	
	# FX currency
	USD = Stock_Close('UUP', 2010, 1, 1)

	# create a dataframe housing the above
	X = DataFrame({'GOOGLE':GOOG, 'APPLE':AAPL, 'CAT':CAT, 'SPDR_GOLD':GOLD,
	 'OIL':OIL, 'NATURAL_GAS':GAS, 'USD':USD, 'GOLDMANSACHS': GS, 'DOMINION':DOM})

	# define weights of each asset held
	# weights = {'GOOGLE':.2,
	# 		    'APPLE':.1, 
	# 		     'CAT':.1, 
	# 	   'SPDR GOLD':.05,
	#  	     	  'OIL':.1, 
	#       'NATURAL GAS':.1, 
	#      		 'USD':.05,
	#      	 'DOMINION':.1,
	#      'GOLDMANSACHS':.2}

	best = zeros(((2+len(assets)), MAX_ITERS))

	for i in range(1, MAX_ITERS):
		# check to make sure sum weights = 1
		numWeight = DirichletDistro(len(assets),1)
		
		if int(sum(numWeight)) < 1.01:
			#create dictionary of weights for each of the assets
			weights = dict(zip(assets, numWeight))

			profit, STD, EWMA = Stock_stats(X, weights, assets, lam)

			# store trial profit, stdev in column of best
			best[0:2, i] = [ profit, STD]
			best[2::, i] = numWeight

		else:
			print('Sum of weights does not equal 1')

	# now that we have the monte carlo simulation setup, eliminate
	# all trials that do not meet critera
	for i in range(1, MAX_ITERS):
		if best[1, i] >std_max:
			best[:, i] = zeros(( (2+len(assets)), 1)) # drop the trial 
			# add more critera here...
		else:
			pass


	print( max(sum(best, 0)) ) 		# print the maximum portfolio
	return X, weights, STD, profit, numWeight, best, EWMA
Ejemplo n.º 4
0
def main():
	# define the desired portfolio characteristics
	std_max = .2		# maximum standard deviation 
	MAX_ITERS = 200 	# max number of iterations
	lam = .94  			# exponential decay number 
	exit_date = 12  	# when you sell stocks (in months)
	window_begin = 6    # how far back you want to window reg. (in months)
	beta = .6			# personal risk adversion level
	delta = .99			# discount factor 

	assets = (['GOOGLE', 'APPLE', 'CAT', 'SPDR_GOLD', 'OIL',
	 'NATURAL_GAS', 'USD', 'GOLDMANSACHS', 'DOMINION'])

	print('Pulling data from Yahoo! Finance')
	# Pull data from Yahoo! Finance 
	GOOG= Stock_Close('GOOG', 2010, 1, 1)
	AAPL = Stock_Close('AAPL', 2010,1, 1)
	SP500 = Stock_Close('^GSPC', 2010, 1, 1)
	CAT = Stock_Close('CAT', 2010, 1, 1)
	GOLD = Stock_Close('GLD', 2010, 1, 1)
	GAS = Stock_Close('GAZ', 2010, 1, 1)
	OIL = Stock_Close('OIL', 2010, 1, 1)
	GS = Stock_Close('GS', 2010, 1, 1)
	DOM = Stock_Close('D', 2010, 1, 1)
	
	# FX currency
	USD = Stock_Close('UUP', 2010, 1, 1)

	# create a dataframe housing the above
	X = DataFrame({'GOOGLE':GOOG, 'APPLE':AAPL, 'CAT':CAT, 'SPDR_GOLD':GOLD,
	 'OIL':OIL, 'NATURAL_GAS':GAS, 'USD':USD, 'GOLDMANSACHS': GS, 'DOMINION':DOM})

	best = zeros(((4+len(assets)), MAX_ITERS))

	print('Running monte carlo simulation')
	for i in range(1, MAX_ITERS):
		print('Percent Done: \t' + str(float(i)/float(MAX_ITERS)*100)+' %')
		numWeight = DirichletDistro(len(assets),1)
		EU = {}
		
		# check to make sure sum weights = 1
		if int(sum(numWeight)) < 1.01: # account for floating point err
			#create dictionary of weights for each of the assets
			weights = dict(zip(assets, numWeight))

			STD, EWMA = Stock_stats(X, weights, assets, lam)

			# calculate price at future period 
			regr, window, projection, profit = regression(X, assets, window_begin, exit_date)
			# calculate expected utility
			for ass in assets:
				profit[ass] = profit[ass] * weights[ass]
				EU[ass] = utl(profit[ass], EWMA[ass], beta, delta, exit_date*30)
			
			# calculate the variance of the portfolio
			var_portfolio = var(X, weights, assets)

			# # check if the EWMA is above the specified limit
			if var_portfolio == std_max:
				best[:, i] = zeros(( (4+len(assets)) )) # drop the trial 
				# add more critera here...
			else:				# store trial profit, EWMA, STD in column of best
				best[0:4, i] = [sum(EU.values()), var_portfolio, sum(EWMA.values()), sum(profit.values())]
				sorted_assest = sorted(weights.keys())
				print(sum(profit.values()))
				j = 4
				for ass in sorted_assest:
					best[j, i] = weights[ass]
					j = j+1 

		else:
			print('Sum of weights does not equal 1')



	maxP = max(best[0,:]) 
	print( "The maximum profit to be made is: %f") % maxP
	# find the column where the sum is equal to the max
	opt = where(best[0,:] == maxP)
	# OptimalAllocation = dict(zip(assets, [float(xx) for xx in best[2:,opt]]))
	print('\n The optimal asset allocation in the portfolio is:')
	# print(OptimalAllocation)
	return X, best, assets, EU, regr, profit