def __init__(self, pd, transform=None): """ Args: pd: Pandas dataframe, first column is assumed to be data transform (callable, optional): Optional transform to be applied on a sample. """ self.pd_frame = pd.copy() self.transform = transform
def binary_n(pd): rs = pd.copy() for row in pd.iterrows(): row = row[1] rows = binary(row) if rows is None: continue rs = rs.append(rows) print len(rs) print len(pd) return rs
def alg(): start = 0 koniec = start rozmiar_macierzy_wag = 30 rozmiar_populacji = 30 liczba_iteracji = 1000 liczba_par = 9 liczba_najlepszych_rozwiazan = 2 prawdopodobienstwo_mutacji = 0.05 liczba_grup = 1 macierz = macierz_wag(rozmiar_macierzy_wag) populacja = populacja_startowa(rozmiar_populacji, macierz, start, koniec) ostatnia_odl = 10000000 najlepsze_wyniki = [] for i in range(liczba_iteracji): nowa_populacja = [] # drogi bieżącej populacji wyniki = wynik_populacji(populacja, macierz) najlepszy = populacja[np.argmin(wyniki)] # najkrotsza droga liczba_ruchow = len(najlepszy) odleglosc = zmierz_dlugosc(najlepszy, macierz) if odleglosc != ostatnia_odl: print('Iteracja %i: droga wynosi %f' % (i, odleglosc)) # rozmnażanie się członków na podstawanie wyników podobieństwa/metoda ruletki for j in range(liczba_par): nowy_1 = krzyzowanie(list(populacja[znajdz_kolege(wyniki)]), list(populacja[znajdz_kolege(wyniki)])) nowa_populacja = nowa_populacja + [nowy_1] # mutacja for j in range(len(nowa_populacja)): nowa_populacja[j] = np.copy( mutacja(nowa_populacja[j], prawdopodobienstwo_mutacji, macierz)) # zatrzymanie członków starej populacjiw w nowej nowa_populacja += [populacja[np.argmin(wyniki)]] for j in range(1, liczba_najlepszych_rozwiazan): przechowawca = znajdz_kolege(wyniki) nowa_populacja += [populacja[przechowawca]] # uzupełnienianie populacji randmowymi członkami while len(nowa_populacja) < rozmiar_populacji: nowa_populacja += [nowy_osobnik(macierz, start, koniec)] populacja = copy.deepcopy(nowa_populacja) ostatnia_odl = odleglosc najlepsze_wyniki.append([i, odleglosc])
def generate_random_dataset_with_respect_to_categories(df, rows): df_new = pd.copy(df) for column in df: min_cat = min(np.nanmin(df[column])) max_cat = max(np.nanmax(df[column])) print('yo') try: df_new[column] = np.random.choice( range(int(min_cat), int(max_cat) + 1), rows) except ValueError: print('hello')
def callback(pd): global rec_db global count pd_temp = [] # print pd if (count % 4 == 0): pd_temp = pd.copy(deep=True) pd_temp = pd_temp.drop('Date', 1) rec_db = rec_db.append(pd_temp) count += 1 return pd_temp
def simulate_season(trace): """ Simulate a season once, using one random draw from the mcmc chain. """ #num_samples = atts.trace().shape[0] #df_trace = pymc.trace_to_dataframe(trace[:1000]) num_samples = trace['atts'].shape[0] draw = np.random.randint(0, num_samples) atts_draw = pd.DataFrame({ 'att': trace['atts'][draw, :], }) defs_draw = pd.DataFrame({ 'def': trace['defs'][draw, :], }) home_draw = trace['home'][draw] intercept_draw = trace['intercept'][draw] season = pd.copy() season = pd.merge(season, atts_draw, left_on='i_home', right_index=True) season = pd.merge(season, defs_draw, left_on='i_home', right_index=True) season = season.rename(columns={'att': 'att_home', 'def': 'def_home'}) season = pd.merge(season, atts_draw, left_on='i_away', right_index=True) season = pd.merge(season, defs_draw, left_on='i_away', right_index=True) season = season.rename(columns={'att': 'att_away', 'def': 'def_away'}) season['home'] = home_draw season['intercept'] = intercept_draw season['home_theta'] = season.apply(lambda x: math.exp(x['intercept'] + x[ 'home'] + x['att_home'] + x['def_away']), axis=1) season['away_theta'] = season.apply( lambda x: math.exp(x['intercept'] + x['att_away'] + x['def_home']), axis=1) season['home_goals'] = season.apply( lambda x: np.random.poisson(x['home_theta']), axis=1) season['away_goals'] = season.apply( lambda x: np.random.poisson(x['away_theta']), axis=1) season['home_outcome'] = season.apply( lambda x: 'win' if x['home_goals'] > x['away_goals'] else 'loss' if x['home_goals'] < x['away_goals'] else 'draw', axis=1) season['away_outcome'] = season.apply( lambda x: 'win' if x['home_goals'] < x['away_goals'] else 'loss' if x['home_goals'] > x['away_goals'] else 'draw', axis=1) season = season.join(pd.get_dummies(season.home_outcome, prefix='home')) season = season.join(pd.get_dummies(season.away_outcome, prefix='away')) return season
def EventHandler(self, pd): """Event Handler Object""" self.pd_temp = pd.copy(deep=True) #Hardcoded for now if (pd['Event'].values == 3): if ((self.buy_db.shape[0] > 0) and (self.buy_db['ItemId'].isin( self.pd_temp['ItemId']).any() == True)): index = self.buy_db[self.buy_db['ItemId'].isin( self.pd_temp['ItemId'])].index self.buy_db.loc[index, 'Count'] += 1 else: self.pd_temp['Count'] = 1 self.buy_db = self.buy_db.append( self.pd_temp.drop(['Date', 'SessionID', 'Event'], axis=1, inplace=False)) return
decipline = predicate( g.subject_objects( predicate=rdflib.term.URIRef(u'http://dbpedia.org/ontology/disciple'))) education = predicate( g.subject_objects(predicate=rdflib.term.URIRef( u'http://dbpedia.org/ontology/education'))) mentor = predicate( g.subject_objects( predicate=rdflib.term.URIRef(u'http://dbpedia.org/ontology/mentor'))) university = predicate( g.subject_objects(predicate=rdflib.term.URIRef( u'http://dbpedia.org/ontology/university'))) #Tensor Factorization by ALS A, R, _, _, _ = rescal.als([ 0.0001 * RDF_Type, 0.0001 * Subject, OWL_SameAs, Influence, BirthPlace, Occupation, wikiPageExternalLink, Country, profesion, nationality, deathplace, title, formerteam, league, position, team, termperiod, website, careerstation, clubs, currentclub, nationalteam, youth, Chancellor, party, religion, spouse, sucees, battle, militaryrank, relation, branch, rank, first, last, strokes, collegeteam, associatedband, associatedmusic, genre, hometown, recordlev, origion, word_net, after, before, predecessor, successor, language, residence, parent, father, house, issue, mother, coach, instrument, label, alongside, consitency, deputy, govegene, honpref, monarch, office, order, prime, movie, education_place, decoration, decipline, education, mentor, university ], 100) simstru = cosine_similarity(A, A) #applying cosine similarity pd = pd.DataFrame( simstru) #A data structure to identify the location of resources in memory pd2 = pd.copy()
p_0 = p.copy() p_0 = p_0.drop(max(p_0.index)) p_0 = p_0.reset_index(drop=True) p_1 = p.copy() p_1 = p_1.drop(0).reset_index(drop=True) x = p_1 / p_0 # plt.plot(x) # plt.legend(x.keys()) # plt.show() b = np.full((len(x), d), 1. / d) s = np.full((len(x), d), 1.) omega = 30 _x = x.copy() _x = _x.iloc[omega:] _x.reset_index(drop=True, inplace=True) for c in _x.keys(): _x[c] = np.zeros(len(x) - omega) epsilon = 5 for i in range(omega, len(p)): print('b=', b[i - omega]) median = geometric_median(p.iloc[0:i], method='rf_regressor', options={ 'maxiter': 10000, 'tol': 1e-14 })
def combine_columns_ag_news(pd): pd = pd.copy() pd[3] = pd[1] + ' ' + pd[2] del pd[1] del pd[2] return pd
def __init__(self, pd, name): self.pd = pd.copy() self.name = name
def EventHandler(self, pd): """Event Handler Object""" self.pd_temp = pd.copy(deep=True) return
residence=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/ontology/residence'))) parent=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/ontology/parent'))) father=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/property/father'))) house=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/property/house'))) issue=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/property/issue'))) mother=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/property/mother'))) coach=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/ontology/coach'))) instrument=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/ontology/instrument'))) label=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/property/label'))) alongside=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/property/alongside'))) consitency=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/property/constituencyMp'))) deputy=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/property/deputy'))) govegene=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/property/governorGeneral'))) honpref=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/property/honorificPrefix'))) monarch=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/property/monarch'))) office=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/property/office'))) order=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/property/order'))) prime=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/property/primeminister'))) movie=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/ontology/movie'))) education_place=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/ontology/educationPlace'))) decoration=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/ontology/decoration'))) decipline=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/ontology/disciple'))) education=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/ontology/education'))) mentor=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/ontology/mentor'))) university=predicate(g.subject_objects(predicate=rdflib.term.URIRef(u'http://dbpedia.org/ontology/university'))) #Tensor Factorization by ALS A, R,_, _, _ = rescal.als([0.0001*RDF_Type,0.0001*Subject,OWL_SameAs,Influence,BirthPlace,Occupation,wikiPageExternalLink,Country,profesion,nationality,deathplace,title,formerteam,league,position,team,termperiod,website,careerstation,clubs,currentclub,nationalteam,youth,Chancellor,party,religion,spouse,sucees,battle,militaryrank,relation,branch,rank,first,last,strokes,collegeteam,associatedband,associatedmusic,genre,hometown,recordlev,origion,word_net,after,before,predecessor,successor,language,residence,parent,father,house,issue,mother,coach,instrument,label,alongside,consitency,deputy,govegene,honpref,monarch,office,order,prime,movie,education_place,decoration,decipline,education,mentor,university],100) simstru=cosine_similarity(A, A)#applying cosine similarity pd=pd.DataFrame(simstru)#A data structure to identify the location of resources in memory pd2=pd.copy()
def limpa_lista(pd): pd_clear = pd.copy() for i in range(pd.count()): pd_clear[i] = 0 return pd_clear