def get_orig_plot_data(self, col, tail=False):
     # 1 vs 2 plots in the figure
     pd = {}
     if tail:
         num = 10
         tail = self.data[col].value_counts().tail(10)
         pd = tail.to_dict()
     else:
         num = 1000
         head = self.data[col].value_counts().head(10)
         pd = head.to_dict()
     l = []
     l.append(list(pd.keys()))
     l.append(list(pd.values()))
     return l
def add_to_player_dict(pd, players, date):
    team_stats = {'fg': 0, 'fga': 0, 'fta': 0, 'mp': 0, 'tov': 0, 'orb': 0, 'drb': 0, 'fg3a': 0}
    for name in players:
        stats = players[name]
        for key in pd.keys():
            if key=='name':
                pd[key].append(name)
            elif key=='date':
                pd[key].append(date)
            else:
                if stats==None:
                    pd[key].append(None)
                else:
                    if key in team_stats:
                        team_stats[key] += stats[key]
                    pd[key].append(stats[key])
    return team_stats
Ejemplo n.º 3
0
def evaluate_models_compare_to_stacking_r_square(predictions_dict,
                                                 true_treatment_effect,
                                                 stacking_predictions):
    """
    :param predictions_dict:
    :param true_treatment_effect:
    :param stacking_predictions: an array of predicitons given by the stacking model
    :return: a table/array of evaluation metrics for each model
    """

    pd = copy.deepcopy(predictions_dict)
    if "Actuals" in predictions_dict:
        pd.pop('Actuals')
    if "generated_data" in predictions_dict:
        pd.pop('generated_data')

    r2_dict = {}
    for key in pd.keys():
        r2_dict[key] = r2_score(true_treatment_effect, pd[key])

    r2_dict['stacking'] = r2_score(true_treatment_effect, stacking_predictions)
    return r2_dict
Ejemplo n.º 4
0
 def get_colums(pd):
     return " (" + ", ".join(str(key) for key in pd.keys()) + ") "