Ejemplo n.º 1
0
def plot_ApplevsGoogle_1():

    plotname = inspect.stack()[0][3][5:]
    pandas_bokeh.output_file(os.path.join(PLOT_DIR, f"{plotname}.html"))

    df = df_stocks()
    plot = df.plot_bokeh(kind="line")
Ejemplo n.º 2
0
def test_mapplot(df_mapplot):
    "Mapplot test"

    kwargs = dict(
        x="longitude",
        y="latitude",
        hovertool_string="""<h2> @{name} </h2> 
        
                            <h3> Population: @{pop_max} </h3>""",
        tile_provider="STAMEN_TERRAIN_RETINA",
        size="size",
        figsize=(900, 600),
        title="World cities with more than 1.000.000 inhabitants",
        show_figure=False,
    )

    p_map = df_mapplot.plot_bokeh(kind="map", **kwargs)
    p_map_accessor = df_mapplot.plot_bokeh.map(**kwargs)

    p_map_pandas_backend = df_mapplot.plot(kind="map", **kwargs)
    p_map_accessor_pandas_backend = df_mapplot.plot.map(**kwargs)

    layout = pandas_bokeh.plot_grid([[p_map, p_map_accessor]],
                                    plot_width=450,
                                    plot_height=300,
                                    show_plot=False)

    pandas_bokeh.output_file(os.path.join(DIRECTORY, "Plots", "Mapplot.html"))
    pandas_bokeh.save(layout)
Ejemplo n.º 3
0
def plot_Scatterplot():

    plotname = inspect.stack()[0][3][5:]
    pandas_bokeh.output_file(os.path.join(PLOT_DIR, f"{plotname}.html"))

    df = df_iris()
    df = df.sample(frac=1)

    #Create Bokeh-Table with DataFrame:
    from bokeh.models.widgets import DataTable, TableColumn
    from bokeh.models import ColumnDataSource

    data_table = DataTable(
        columns=[TableColumn(field=Ci, title=Ci) for Ci in df.columns],
        source=ColumnDataSource(df.head(10)),
    )

    #Create Scatterplot:
    p_scatter = df.plot_bokeh.scatter(
        x="petal length (cm)",
        y="sepal width (cm)",
        category="species",
        title="Iris DataSet Visualization",
        show_figure=False)

    #Combine Div and Scatterplot via grid layout:
    pandas_bokeh.plot_grid([[data_table, p_scatter]], plot_width=400, plot_height=350)
Ejemplo n.º 4
0
def test_pieplot():
    "Test Pieplot"

    p_pie = df_pie = pd.read_csv(
        os.path.join(test_sets_directory, "Bundestagswahl", "Bundestagswahl.csv")
    )

    p_pie = df_pie.plot_bokeh.pie(
        x="Partei",
        y="2017",
        colormap=["blue", "red", "yellow", "green", "purple", "orange", "grey"],
        title="Results of German Bundestag Election 2017",
        show_figure=False,
    )

    p_pie_multiple = df_pie.plot_bokeh(
        kind="pie",
        x="Partei",
        colormap=["blue", "red", "yellow", "green", "purple", "orange", "grey"],
        title="Results of German Bundestag Elections [2002-2017]",
        line_color="grey",
        show_figure=False,
    )

    layout = pandas_bokeh.plot_grid(
        [[p_pie, p_pie_multiple]], plot_width=450, plot_height=300, show_plot=False
    )

    pandas_bokeh.output_file(os.path.join(directory, "Plots", "Pieplot.html"))
    pandas_bokeh.save(layout)
Ejemplo n.º 5
0
def test_pieplot(df_election):
    "Test Pieplot"

    p_pie = df_election.plot_bokeh.pie(
        x="Partei",
        y="2017",
        colormap=[
            "blue", "red", "yellow", "green", "purple", "orange", "grey"
        ],
        title="Results of German Bundestag Election 2017",
        show_figure=False,
    )

    p_pie_multiple = df_election.plot_bokeh(
        kind="pie",
        x="Partei",
        colormap=[
            "blue", "red", "yellow", "green", "purple", "orange", "grey"
        ],
        title="Results of German Bundestag Elections [2002-2017]",
        line_color="grey",
        show_figure=False,
    )

    p_pie_pandas_backend = df_election.plot.pie(
        x="Partei",
        y="2017",
        colormap=[
            "blue", "red", "yellow", "green", "purple", "orange", "grey"
        ],
        title="Results of German Bundestag Election 2017",
        show_figure=False,
    )

    p_pie_multiple_pandas_backend = df_election.plot(
        kind="pie",
        x="Partei",
        colormap=[
            "blue", "red", "yellow", "green", "purple", "orange", "grey"
        ],
        title="Results of German Bundestag Elections [2002-2017]",
        line_color="grey",
        show_figure=False,
    )

    layout = pandas_bokeh.plot_grid(
        [
            [p_pie, p_pie_multiple],
            [p_pie_pandas_backend, p_pie_multiple_pandas_backend],
        ],
        plot_width=450,
        plot_height=300,
        show_plot=False,
    )

    pandas_bokeh.output_file(os.path.join(DIRECTORY, "Plots", "Pieplot.html"))
    pandas_bokeh.save(layout)
Ejemplo n.º 6
0
def test_area_plots(df_energy):
    "Test area plots"

    p_area = df_energy.plot_bokeh.area(
        x="Year",
        stacked=True,
        legend="top_left",
        colormap=["brown", "orange", "black", "grey", "blue", "green"],
        title="Worldwide energy consumption split by energy source",
        ylabel="Million tonnes oil equivalent",
        ylim=(0, 16000),
        show_figure=False,
    )

    p_area_normed = df_energy.plot_bokeh(
        kind="area",
        x="Year",
        stacked=True,
        normed=100,
        legend="bottom_left",
        colormap=["brown", "orange", "black", "grey", "blue", "green"],
        title="Worldwide energy consumption split by energy source",
        ylabel="Million tonnes oil equivalent",
        show_figure=False,
    )

    p_area_pandas_backend = df_energy.plot.area(
        x="Year",
        stacked=True,
        legend="top_left",
        colormap=["brown", "orange", "black", "grey", "blue", "green"],
        title="Worldwide energy consumption split by energy source",
        ylabel="Million tonnes oil equivalent",
        ylim=(0, 16000),
        show_figure=False,
    )

    p_area_normed_pandas_backend = df_energy.plot(
        kind="area",
        x="Year",
        stacked=True,
        normed=100,
        legend="bottom_left",
        colormap=["brown", "orange", "black", "grey", "blue", "green"],
        title="Worldwide energy consumption split by energy source",
        ylabel="Million tonnes oil equivalent",
        show_figure=False,
    )

    layout = pandas_bokeh.plot_grid([[p_area, p_area_normed]],
                                    plot_width=450,
                                    plot_height=300,
                                    show_plot=False)

    pandas_bokeh.output_file(os.path.join(DIRECTORY, "Plots", "Areaplot.html"))
    pandas_bokeh.save(layout)
Ejemplo n.º 7
0
def plot_Barplot():

    plotname = inspect.stack()[0][3][5:]
    pandas_bokeh.output_file(os.path.join(PLOT_DIR, f"{plotname}.html"))

    df = df_fruits()

    df.plot_bokeh.bar(ylabel="Price per Unit [€]",
                      title="Fruit prices per Year",
                      alpha=0.6)
Ejemplo n.º 8
0
def test_basic_lineplot_rangetool(df_stock):
    """Test for basic lineplot above with a rangetool extension"""

    p_basic_lineplot_accessor_pandas_backend = df_stock.plot.line(
        show_figure=False, rangetool=True)

    # Output plot as HTML:
    pandas_bokeh.output_file(
        os.path.join(DIRECTORY, "Plots", "Basic_lineplot_rangetool.html"))
    pandas_bokeh.save(p_basic_lineplot_accessor_pandas_backend)

    assert True
Ejemplo n.º 9
0
def plot_df_lines_bokeh(df,
                        x_col,
                        y_cols,
                        figures_path,
                        filename,
                        save_flag=False):
    columns_names = list(df.columns)

    if save_flag:
        outfp = os.path.join(figures_path, filename + ".html")
        output_file(outfp)
        pandas_bokeh.output_file(outfp)

    warnings.filterwarnings("ignore")

    df = df.set_index(x_col, drop=True)[y_cols]
    df["t"] = df.index.values
    if x_col == "data" or x_col == "datetime":
        df.t = df.t.apply(lambda d: str(d.date()))

    p = df.plot.line(marker="o",
                     plot_data_points=True,
                     panning=True,
                     figsize=(900, 500),
                     legend="top_left",
                     show_figure=False,
                     rangetool=False,
                     hovertool_string="""
            t: @t <br/>
        """)

    hovers = p.select(dict(type=HoverTool))
    flag_first = True
    for hover in hovers:
        hover.tooltips = []
        if flag_first:
            for y_col in ["t"] + y_cols:
                hover.tooltips += [
                    (y_col, '@{' + y_col + '}'),
                ]
        flag_first = False

    if save_flag:
        item_text = json.dumps(json_item(p, filename))
        output_path = os.path.join(figures_path, filename + ".json")
        with open(output_path, "w+") as out_f:
            out_f.write(item_text)

        save(p)
    p.background_fill_alpha = 0
    p.border_fill_alpha = 0
    return p
Ejemplo n.º 10
0
def plot_rangetool():

    plotname = inspect.stack()[0][3][5:]
    pandas_bokeh.output_file(os.path.join(PLOT_DIR, f"{plotname}.html"))

    ts = pd.Series(np.random.randn(1000),
                   index=pd.date_range("1/1/2000", periods=1000))
    df = pd.DataFrame(np.random.randn(1000, 4),
                      index=ts.index,
                      columns=list("ABCD"))
    df = df.cumsum()

    df.plot_bokeh(rangetool=True)
Ejemplo n.º 11
0
def test_histogram():
    "Test for histograms"

    import numpy as np

    df_hist = pd.DataFrame(
        {
            "a": np.random.randn(1000) + 1,
            "b": np.random.randn(1000),
            "c": np.random.randn(1000) - 1,
        },
        columns=["a", "b", "c"],
    )

    # Top-on-Top Histogram (Default):
    p_tt = df_hist.plot_bokeh.hist(
        bins=np.linspace(-5, 5, 41),
        vertical_xlabel=True,
        hovertool=False,
        title="Normal distributions (Top-on-Top)",
        line_color="black",
        show_figure=False,
    )

    # Side-by-Side Histogram (multiple bars share bin side-by-side) also accessible via
    # kind="hist":
    p_ss = df_hist.plot_bokeh(
        kind="hist",
        bins=np.linspace(-5, 5, 41),
        histogram_type="sidebyside",
        vertical_xlabel=True,
        hovertool=False,
        title="Normal distributions (Side-by-Side)",
        line_color="black",
        show_figure=False,
    )

    # Stacked histogram:
    p_stack = df_hist.plot_bokeh.hist(
        bins=np.linspace(-5, 5, 41),
        histogram_type="stacked",
        vertical_xlabel=True,
        hovertool=False,
        title="Normal distributions (Stacked)",
        line_color="black",
        show_figure=False,
    )

    layout = pandas_bokeh.column([p_tt, p_ss, p_stack])
    pandas_bokeh.output_file(os.path.join(directory, "Plots", "Histogram.html"))
    pandas_bokeh.save(layout)
Ejemplo n.º 12
0
def plot_Stepplot():

    plotname = inspect.stack()[0][3][5:]
    pandas_bokeh.output_file(os.path.join(PLOT_DIR, f"{plotname}.html"))

    df = df_parabula_cube()
    plot = df.plot_bokeh.step(
        x="x",
        xticks=range(-1, 1),
        colormap=["#009933", "#ff3399"],
        title="Pointplot (Parabula vs. Cube)",
        mode="after",
        figsize=(800, 300),
    )
Ejemplo n.º 13
0
def plot_Pointplot():

    plotname = inspect.stack()[0][3][5:]
    pandas_bokeh.output_file(os.path.join(PLOT_DIR, f"{plotname}.html"))

    df = df_parabula_cube()
    plot = df.plot_bokeh.point(
        x="x",
        xticks=range(-3, 4),
        size=5,
        colormap=["#009933", "#ff3399"],
        title="Pointplot (Parabula vs. Cube)",
        marker="x",
    )
Ejemplo n.º 14
0
def plot_lines_dashboard_ita(cases_df, figures_path, geo_name,
                             plot_dashboard_flag):
    for save_flag in [False]:
        p1 = plot_df_lines_bokeh(cases_df, "data", [
            "totale_tamponi",
            "totale_casi",
        ], figures_path, "tamponi", save_flag)

        p2 = plot_df_lines_bokeh(cases_df, "data", [
            "totale_attualmente_positivi", "totale_deceduti",
            "totale_dimessi_guariti"
        ], figures_path, "totali_principali", save_flag)

        p3 = plot_df_lines_bokeh(cases_df, "data", [
            "nuovi_positivi", "nuovi_attualmente_positivi", "nuovi_deceduti",
            "nuovi_dimessi_guariti"
        ], figures_path, "nuovi_principali", save_flag)

        p4 = plot_df_lines_bokeh(cases_df, "data", [
            "tasso_positivi_tamponi", "tasso_nuovi_positivi",
            "tasso_mortalita", "tasso_guarigione"
        ], figures_path, "tassi_principali", save_flag)

        p5 = plot_df_lines_bokeh(cases_df, "data", [
            "attualmente_isolamento_domiciliare",
            "attualmente_ricoverati",
            "attualmente_terapia_intensiva",
        ], figures_path, "dettaglio_pazienti_attuali", save_flag)

        p6 = plot_df_lines_bokeh(cases_df, "data", [
            "tasso_ricoverati_con_sintomi",
            "tasso_terapia_intensiva",
            "tasso_terapia_intensiva_ricoverati",
        ], figures_path, "tassi_condizioni_cliniche", save_flag)

    if plot_dashboard_flag:
        outfp = os.path.join(figures_path, geo_name + ".html")
        output_file(outfp)
        pandas_bokeh.output_file(outfp)

        plot_grid = pandas_bokeh.plot_grid([
            [p1, p2],
            [p3, p4],
            [p5, p6],
        ],
                                           toolbar_location="left")

        # pandas_bokeh.save(plot_grid)
        save(plot_grid)
Ejemplo n.º 15
0
def plot_Barplot3():

    plotname = inspect.stack()[0][3][5:]
    pandas_bokeh.output_file(os.path.join(PLOT_DIR, f"{plotname}.html"))

    df = df_fruits()

    p_bar = df.plot_bokeh.bar(
        ylabel="Price per Unit [€]",
        title="Fruit prices per Year",
        alpha=0.6,
        show_figure=False,
    )

    p_stacked_bar = df.plot_bokeh.bar(
        ylabel="Price per Unit [€]",
        title="Fruit prices per Year",
        stacked=True,
        alpha=0.6,
        show_figure=False,
    )

    # Reset index, such that "fruits" is now a column of the DataFrame:
    df.reset_index(inplace=True)

    # Create horizontal bar (via kind keyword):
    p_hbar = df.plot_bokeh(
        kind="barh",
        x="fruits",
        xlabel="Price per Unit [€]",
        title="Fruit prices per Year",
        alpha=0.6,
        legend="bottom_right",
        show_figure=False,
    )

    # Create stacked horizontal bar (via barh accessor):
    p_stacked_hbar = df.plot_bokeh.barh(
        x="fruits",
        stacked=True,
        xlabel="Price per Unit [€]",
        title="Fruit prices per Year",
        alpha=0.6,
        legend="bottom_right",
        show_figure=False,
    )

    pandas_bokeh.plot_grid([[p_bar, p_stacked_bar], [p_hbar, p_stacked_hbar]],
                           plot_width=450)
Ejemplo n.º 16
0
def test_histogram_average_diplay(df_hist):
    "Test average & cumulative function of histogram"

    p_hist = df_hist.plot_bokeh.hist(
        y=["a", "b"],
        bins=np.arange(-4, 6.5, 0.5),
        normed=100,
        vertical_xlabel=True,
        ylabel="Share[%]",
        title="Normal distributions (normed)",
        show_average=True,
        xlim=(-4, 6),
        ylim=(0, 30),
        show_figure=False,
    )

    p_hist_cum = df_hist.plot_bokeh.hist(
        y=["a", "b"],
        bins=np.arange(-4, 6.5, 0.5),
        normed=100,
        cumulative=True,
        vertical_xlabel=True,
        ylabel="Share[%]",
        title="Normal distributions (normed & cumulative)",
        show_figure=False,
    )

    p_hist_cum_pandas_backend = df_hist.plot.hist(
        by=["a", "b"],
        bins=np.arange(-4, 6.5, 0.5),
        normed=100,
        cumulative=True,
        vertical_xlabel=True,
        ylabel="Share[%]",
        title="Normal distributions (normed & cumulative)",
        show_figure=False,
    )

    p_average = pandas_bokeh.plot_grid(
        [[p_hist, p_hist_cum, p_hist_cum_pandas_backend]],
        plot_width=450,
        plot_height=300,
        show_plot=False,
    )

    pandas_bokeh.output_file(
        os.path.join(DIRECTORY, "Plots",
                     "Histogram_average_and_cumulative.html"))
    pandas_bokeh.save(p_average)
Ejemplo n.º 17
0
def test_autosizing(df_fruits):
    """
    Autoscaling test
    """

    kwargs = dict(figsize=(500, 200),
                  sizing_mode="scale_width",
                  show_figure=False)

    p_autoscale = df_fruits.plot_bokeh(kind="bar", **kwargs)
    pandas_bokeh.output_file(os.path.join(DIRECTORY, "Plots",
                                          "AutoScale.html"))
    pandas_bokeh.save(p_autoscale)

    assert True
    def totals_plot(self, countries=None):
        total_df = self.calc_totals(countries)
        total_df['currently_sick'] = (total_df.confirmed - total_df.deaths -
                                      total_df.recovered)

        total_df = total_df.drop('confirmed', axis=1)
        c_string = self.countries_to_string(countries)

        pandas_bokeh.output_file(os.path.join('figures', 'totals.html'))
        curdoc().theme = Theme(json=jt)
        total_df.plot_bokeh.area(
            figsize=(1500, 750),
            title=f'Total COVID-19 numbers, {c_string}' + self.data_disclaimer,
            ylabel='Number of individuals affected (stacked)',
            stacked=True,
            sizing_mode='scale_both')
Ejemplo n.º 19
0
def plot_comparison_df_bokeh(df,
                             y_cols,
                             figures_path,
                             filename,
                             save_flag=False):
    columns_names = list(df.columns)

    if save_flag:
        outfp = os.path.join(figures_path, filename + ".html")
        output_file(outfp)
        pandas_bokeh.output_file(outfp)

    warnings.filterwarnings("ignore")

    df.index.name = "t"

    p = df.plot.line(marker="o",
                     plot_data_points=True,
                     panning=True,
                     figsize=(1200, 600),
                     legend="top_left",
                     show_figure=False,
                     rangetool=False,
                     hovertool_string="""
            t: @t <br/>
        """)

    hovers = p.select(dict(type=HoverTool))
    flag_first = True
    for hover in hovers:
        hover.tooltips = []
        if flag_first:
            for y_col in df.columns:
                hover.tooltips += [
                    (y_col, '@{' + y_col + '}'),
                ]
        flag_first = False

    if save_flag:
        item_text = json.dumps(json_item(p, filename))
        output_path = os.path.join(figures_path, filename + ".json")
        with open(output_path, "w+") as out_f:
            out_f.write(item_text)

        save(p)

    return p
Ejemplo n.º 20
0
def test_histogram_average_diplay():
    "Test average & cumulative function of histogram"

    import numpy as np

    df_hist = pd.DataFrame(
        {
            "a": np.random.randn(1000) + 1,
            "b": np.random.randn(1000),
            "c": np.random.randn(1000) - 1,
        },
        columns=["a", "b", "c"],
    )

    p_hist = df_hist.plot_bokeh.hist(
        y=["a", "b"],
        bins=np.arange(-4, 6.5, 0.5),
        normed=100,
        vertical_xlabel=True,
        ylabel="Share[%]",
        title="Normal distributions (normed)",
        show_average=True,
        xlim=(-4, 6),
        ylim=(0, 30),
        show_figure=False,
    )

    p_hist_cum = df_hist.plot_bokeh.hist(
        y=["a", "b"],
        bins=np.arange(-4, 6.5, 0.5),
        normed=100,
        cumulative=True,
        vertical_xlabel=True,
        ylabel="Share[%]",
        title="Normal distributions (normed & cumulative)",
        show_figure=False,
    )

    p_average = pandas_bokeh.plot_grid(
        [[p_hist, p_hist_cum]], plot_width=450, plot_height=300, show_plot=False
    )

    pandas_bokeh.output_file(
        os.path.join(directory, "Plots", "Histogram_average_and_cumulative.html")
    )
    pandas_bokeh.save(p_average)
Ejemplo n.º 21
0
def plot_Scatterplot2():

    plotname = inspect.stack()[0][3][5:]
    pandas_bokeh.output_file(os.path.join(PLOT_DIR, f"{plotname}.html"))

    df = df_iris()
    df = df.sample(frac=1)

    #Change one value to clearly see the effect of the size keyword
    df.loc[13, "sepal length (cm)"] = 15

    #Make scatterplot:
    p_scatter = df.plot_bokeh.scatter(
        x="petal length (cm)",
        y="sepal width (cm)",
        category="species",
        title="Iris DataSet Visualization with Size Keyword",
        size="sepal length (cm)")
Ejemplo n.º 22
0
    def draw_graph(df, key_selected):

        plots = []
        result_type_name = key_selected.replace("_", " ").capitalize()
        for alg in set(sorted(df[k0_algorithm].values)):
            alg_name = alg
            alg_type = "scheduling"
            if "heuristic" in alg:
                alg_name = "OGSA"
            elif "optimal" in alg:
                alg_name = "Optimisation model"
            if "fw" in alg:
                alg_name += " with FW"
                alg_type = "pricing"

            df_selected = df.loc[lambda df2: df[k0_algorithm] == alg,
                                 lambda df2: [k0_households_no, key_selected]]
            df_selected = df_selected.set_index(k0_households_no)
            y_label = ""
            if "time" in key_selected:
                y_label = "Run time (seconds)"
            elif "iteration" in key_selected:
                y_label = "Iteration"
            elif "reduction" in key_selected:
                y_label = key_selected.replace("_", " ").capitalize()
            p_line = df_selected.plot_bokeh(
                kind="line",
                title="{} of {}, {}".format(result_type_name, alg_type,
                                            alg_name),
                xlabel="Number of Households",
                ylabel=y_label,
                show_figure=False,
                sizing_mode="scale_width",
            )
            if "reduction" in key_selected:
                p_line.yaxis.formatter = NumeralTickFormatter(format='0 %')
            p_line.legend.location = "top_left"
            p_line.y_range.start = 0
            plots.append(p_line)

        pandas_bokeh.output_file("{}{}.html".format(dt_folder,
                                                    result_type_name))
        grid = pandas_bokeh.plot_grid(plots, ncols=2, show_plot=False)
        pandas_bokeh.save(grid)
Ejemplo n.º 23
0
def plot_ApplevsGoogle_3():

    plotname = inspect.stack()[0][3][5:]
    pandas_bokeh.output_file(os.path.join(PLOT_DIR, f"{plotname}.html"))

    df = df_stocks()
    plot = df.plot_bokeh(
        figsize=(800, 450),
        title="Apple vs Google",
        xlabel="Date",
        ylabel="Stock price [$]",
        yticks=[0, 100, 200, 300, 400],
        ylim=(100, 200),
        xlim=("2001-01-01", "2001-02-01"),
        colormap=["red", "blue"],
        plot_data_points=True,
        plot_data_points_size=10,
        marker="asterisk",
    )
    def simple_plot(self, countries=['Germany', 'Austria', 'Italy']):
        if type(countries) != list:
            raise TypeError('countries argument accepts type list, '
                            f'got {type(countries)} instead')

        confirmed = self.confirmed_df.loc[:, (countries, slice(None),
                                              slice(None), slice(None))]

        confirmed.columns = (
            confirmed.columns.droplevel(3).droplevel(2).droplevel(1))

        pandas_bokeh.output_file(os.path.join('figures', 'simple_plot.html'))
        curdoc().theme = Theme(json=jt)
        confirmed.plot_bokeh.line(figsize=(1500, 750),
                                  title="simple plot",
                                  plot_data_points=True,
                                  plot_data_points_size=5,
                                  marker="circle",
                                  sizing_mode='scale_both')
Ejemplo n.º 25
0
def lineplot(x: str,
             y: list,
             data,
             title="Line Plot",
             output_file="",
             **lineplot_kwargs):
    """
    Plots a line plot.
    
    Parameters
    ----------
    x : str
        X axis column

    y : list
        Y axis column

    data : Dataframe
        Dataframe

    title : str, optional
        Title of the plot, by default 'Line Plot'

    output_file : str, optional
        If a name is provided save the plot to an html file, by default ''
    """

    y.append(x)
    data_copy = data[y].copy()
    data_copy = data_copy.set_index(x)
    xlabel = lineplot_kwargs.pop("xlabel", x)

    p_line = data_copy.plot_bokeh.line(title=title,
                                       xlabel=xlabel,
                                       **lineplot_kwargs)

    if output_file:  # pragma: no cover

        if Path(output_file).suffix == ".html":
            pandas_bokeh.output_file(os.path.join(IMAGE_DIR, output_file))
        else:
            export_png(p_line, os.path.join(IMAGE_DIR, output_file))
Ejemplo n.º 26
0
def plot_Histogram():

    plotname = inspect.stack()[0][3][5:]
    pandas_bokeh.output_file(os.path.join(PLOT_DIR, f"{plotname}.html"))

    df = df_hist()

    # Top-on-Top Histogram (Default):
    p1 = df.plot_bokeh.hist(
        bins=np.linspace(-5, 5, 41),
        vertical_xlabel=True,
        hovertool=False,
        title="Normal distributions (Top-on-Top)",
        line_color="black",
        show_figure=False,
    )

    # Side-by-Side Histogram (multiple bars share bin side-by-side) also accessible via
    # kind="hist":
    p2 = df.plot_bokeh(
        kind="hist",
        bins=np.linspace(-5, 5, 41),
        histogram_type="sidebyside",
        vertical_xlabel=True,
        hovertool=False,
        title="Normal distributions (Side-by-Side)",
        line_color="black",
        show_figure=False,
    )

    # Stacked histogram:
    p3 = df.plot_bokeh.hist(
        bins=np.linspace(-5, 5, 41),
        histogram_type="stacked",
        vertical_xlabel=True,
        hovertool=False,
        title="Normal distributions (Stacked)",
        line_color="black",
        show_figure=False,
    )

    pandas_bokeh.plot_grid([[p1], [p2], [p3]])
Ejemplo n.º 27
0
def plot_ApplevsGoogle_2():

    plotname = inspect.stack()[0][3][5:]
    pandas_bokeh.output_file(os.path.join(PLOT_DIR, f"{plotname}.html"))

    df = df_stocks()
    plot = df.plot_bokeh(
        figsize=(800, 450),
        y="Apple",
        title="Apple vs Google",
        xlabel="Date",
        ylabel="Stock price [$]",
        yticks=[0, 100, 200, 300, 400],
        ylim=(0, 400),
        toolbar_location=None,
        colormap=["red", "blue"],
        hovertool_string=r"<img src='https://upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Apple_logo_black.svg/170px-Apple_logo_black.svg.png' height='42' alt='@imgs' width='42' style='float: left; margin: 0px 15px 15px 0px;' border='2' ></img> Apple \n\n<h4> Stock Price: </h4> @{Apple}",
        panning=False,
        zooming=False,
    )
Ejemplo n.º 28
0
def test_mapplot():
    "Mapplot test"

    df_mapplot = pd.read_csv(os.path.join(test_sets_directory, "populated places","populated_places.csv"))

    df_mapplot["size"] = df_mapplot["pop_max"] / 1000000

    p_map = df_mapplot.plot_bokeh.map(
        x="longitude",
        y="latitude",
        hovertool_string="""<h2> @{name} </h2> 
        
                            <h3> Population: @{pop_max} </h3>""",
        tile_provider="STAMEN_TERRAIN_RETINA",
        size="size", 
        figsize=(900, 600),
        title="World cities with more than 1.000.000 inhabitants",
        show_figure=False)

    pandas_bokeh.output_file(os.path.join(directory, "Plots", "Mapplot.html"))
    pandas_bokeh.save(p_map)
Ejemplo n.º 29
0
def lineplot(x: str,
             y: list,
             data,
             title="Line Plot",
             output_file="",
             **lineplot_kwargs):
    """
    Plots a line plot.
    
    Parameters
    ----------
    x : str
        X axis column

    y : list
        Y axis column

    data : Dataframe
        Dataframe

    title : str, optional
        Title of the plot, by default 'Line Plot'

    output_file : str, optional
        If a name is provided save the plot to an html file, by default ''
    """

    data_copy = data[[x] + y].copy()
    data_copy = data_copy.set_index(x)
    xlabel = lineplot_kwargs.pop("xlabel", x)

    p_line = data_copy.plot_bokeh.line(title=title,
                                       xlabel=xlabel,
                                       **lineplot_kwargs)

    if output_file:
        pandas_bokeh.output_file(output_file)
        pandas_bokeh.save(p_line)
Ejemplo n.º 30
0
def plot_lines_dashboard(cases_df, figures_path, geo_name,
                         plot_dashboard_flag):
    if plot_dashboard_flag:

        save_flag = False

        outfp = os.path.join(figures_path, geo_name + ".html")
        output_file(outfp)
        pandas_bokeh.output_file(outfp)
    else:
        save_flag = True

    p1 = plot_df_lines_bokeh(cases_df, "datetime", [
        "total_cases",
    ], figures_path, "cases", save_flag)

    p2 = plot_df_lines_bokeh(cases_df, "datetime",
                             ["total_deaths", "total_recovered"], figures_path,
                             "main_totals", save_flag)

    p3 = plot_df_lines_bokeh(cases_df, "datetime", [
        "new_positives", "new_currently_positives", "new_deaths",
        "new_recovered"
    ], figures_path, "main_new", save_flag)
    p4 = plot_df_lines_bokeh(
        cases_df, "datetime",
        ["rate_new_positives", "rate_deaths", "rate_recovered"], figures_path,
        "main_rate", save_flag)

    if plot_dashboard_flag:
        plot_grid = pandas_bokeh.plot_grid([
            [p1, p2],
            [p3, p4],
        ],
                                           toolbar_location="left")

        # pandas_bokeh.save(plot_grid)
        save(plot_grid)