Ejemplo n.º 1
0
def accbands(high,
             low,
             close,
             length=None,
             c=None,
             drift=None,
             mamode=None,
             offset=None,
             **kwargs):
    """Indicator: Acceleration Bands (ACCBANDS)"""
    # Validate arguments
    high = verify_series(high)
    low = verify_series(low)
    close = verify_series(close)
    high_low_range = non_zero_range(high, low)
    length = int(length) if length and length > 0 else 20
    c = float(c) if c and c > 0 else 4
    mamode = mamode if isinstance(mamode, str) else "sma"
    drift = get_drift(drift)
    offset = get_offset(offset)

    # Calculate Result
    hl_ratio = high_low_range / (high + low)
    hl_ratio *= c
    _lower = low * (1 - hl_ratio)
    _upper = high * (1 + hl_ratio)

    lower = ma(mamode, _lower, length=length)
    mid = ma(mamode, close, length=length)
    upper = ma(mamode, _upper, length=length)

    # Offset
    if offset != 0:
        lower = lower.shift(offset)
        mid = mid.shift(offset)
        upper = upper.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        lower.fillna(kwargs["fillna"], inplace=True)
        mid.fillna(kwargs["fillna"], inplace=True)
        upper.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        lower.fillna(method=kwargs["fill_method"], inplace=True)
        mid.fillna(method=kwargs["fill_method"], inplace=True)
        upper.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    lower.name = f"ACCBL_{length}"
    mid.name = f"ACCBM_{length}"
    upper.name = f"ACCBU_{length}"
    mid.category = upper.category = lower.category = "volatility"

    # Prepare DataFrame to return
    data = {lower.name: lower, mid.name: mid, upper.name: upper}
    accbandsdf = DataFrame(data)
    accbandsdf.name = f"ACCBANDS_{length}"
    accbandsdf.category = mid.category

    return accbandsdf
Ejemplo n.º 2
0
def kvo(high,
        low,
        close,
        volume,
        fast=None,
        slow=None,
        signal=None,
        mamode=None,
        drift=None,
        offset=None,
        **kwargs):
    """Indicator: Klinger Volume Oscillator (KVO)"""
    # Validate arguments
    fast = int(fast) if fast and fast > 0 else 34
    slow = int(slow) if slow and slow > 0 else 55
    signal = int(signal) if signal and signal > 0 else 13
    mamode = mamode.lower() if mamode and isinstance(mamode, str) else "ema"
    _length = max(fast, slow, signal)
    high = verify_series(high, _length)
    low = verify_series(low, _length)
    close = verify_series(close, _length)
    volume = verify_series(volume, _length)
    drift = get_drift(drift)
    offset = get_offset(offset)

    if high is None or low is None or close is None or volume is None: return

    # Calculate Result
    signed_volume = volume * signed_series(hlc3(high, low, close), 1)
    sv = signed_volume.loc[signed_volume.first_valid_index():, ]
    kvo = ma(mamode, sv, length=fast) - ma(mamode, sv, length=slow)
    kvo_signal = ma(mamode, kvo.loc[kvo.first_valid_index():, ], length=signal)

    # Offset
    if offset != 0:
        kvo = kvo.shift(offset)
        kvo_signal = kvo_signal.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        kvo.fillna(kwargs["fillna"], inplace=True)
        kvo_signal.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        kvo.fillna(method=kwargs["fill_method"], inplace=True)
        kvo_signal.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    _props = f"_{fast}_{slow}_{signal}"
    kvo.name = f"KVO{_props}"
    kvo_signal.name = f"KVOs{_props}"
    kvo.category = kvo_signal.category = "volume"

    # Prepare DataFrame to return
    data = {kvo.name: kvo, kvo_signal.name: kvo_signal}
    df = DataFrame(data)
    df.name = f"KVO{_props}"
    df.category = kvo.category

    return df
Ejemplo n.º 3
0
def dm(high,
       low,
       length=None,
       mamode=None,
       talib=None,
       drift=None,
       offset=None,
       **kwargs):
    """Indicator: DM"""
    # Validate Arguments
    length = int(length) if length and length > 0 else 14
    mamode = mamode.lower() if mamode and isinstance(mamode, str) else "rma"
    high = verify_series(high)
    low = verify_series(low)
    drift = get_drift(drift)
    offset = get_offset(offset)
    mode_tal = bool(talib) if isinstance(talib, bool) else True

    if high is None or low is None:
        return

    if Imports["talib"] and mode_tal:
        from talib import MINUS_DM, PLUS_DM
        pos = PLUS_DM(high, low, length)
        neg = MINUS_DM(high, low, length)
    else:
        up = high - high.shift(drift)
        dn = low.shift(drift) - low

        pos_ = ((up > dn) & (up > 0)) * up
        neg_ = ((dn > up) & (dn > 0)) * dn

        pos_ = pos_.apply(zero)
        neg_ = neg_.apply(zero)

        # Not the same values as TA Lib's -+DM (Good First Issue)
        pos = ma(mamode, pos_, length=length)
        neg = ma(mamode, neg_, length=length)

    # Offset
    if offset != 0:
        pos = pos.shift(offset)
        neg = neg.shift(offset)

    _params = f"_{length}"
    data = {
        f"DMP{_params}": pos,
        f"DMN{_params}": neg,
    }

    dmdf = DataFrame(data)
    # print(dmdf.head(20))
    # print()
    dmdf.name = f"DM{_params}"
    dmdf.category = "trend"

    return dmdf
Ejemplo n.º 4
0
def kvo(high, low, close, volume, fast=None, slow=None, length_sig=None, mamode=None, drift=None, offset=None, **kwargs):
    """Indicator: Klinger Volume Oscillator (KVO)"""
    # Validate arguments
    fast = int(fast) if fast and fast > 0 else 34
    slow = int(slow) if slow and slow > 0 else 55
    length_sig = int(length_sig) if length_sig and length_sig > 0 else 13
    mamode = mamode.lower() if mamode and isinstance(mamode, str) else "ema"
    _length = max(fast, slow, length_sig)
    high = verify_series(high, _length)
    low = verify_series(low, _length)
    close = verify_series(close, _length)
    volume = verify_series(volume, _length)
    drift = get_drift(drift)
    offset = get_offset(offset)

    if high is None or low is None or close is None or volume is None: return

    # Calculate Result
    mom = hlc3(high, low, close).diff(drift)
    trend = npWhere(mom > 0, 1, 0) + npWhere(mom < 0, -1, 0)
    dm = non_zero_range(high, low)

    m = high.size
    cm = [0] * m
    for i in range(1, m):
        cm[i] = (cm[i - 1] + dm[i]) if trend[i] == trend[i - 1] else (dm[i - 1] + dm[i])

    vf = 100 * volume * trend * abs(2 * dm / cm - 1)

    kvo = ma(mamode, vf, length=fast) - ma(mamode, vf, length=slow)
    kvo_signal = ma(mamode, kvo, length=length_sig)

    # Offset
    if offset != 0:
        kvo = kvo.shift(offset)
        kvo_signal = kvo_signal.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        kvo.fillna(kwargs["fillna"], inplace=True)
        kvo_signal.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        kvo.fillna(method=kwargs["fill_method"], inplace=True)
        kvo_signal.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    kvo.name = f"KVO_{fast}_{slow}"
    kvo_signal.name = f"KVOSig_{length_sig}"
    kvo.category = kvo_signal.category = "volume"

    # Prepare DataFrame to return
    data = {kvo.name: kvo, kvo_signal.name: kvo_signal}
    kvoandsig = DataFrame(data)
    kvoandsig.name = f"KVO_{fast}_{slow}_{length_sig}"
    kvoandsig.category = kvo.category

    return kvoandsig
Ejemplo n.º 5
0
def kc(high, low, close, length=None, scalar=None, mamode=None, offset=None, **kwargs):
    """Indicator: Keltner Channels (KC)"""
    # Validate arguments
    length = int(length) if length and length > 0 else 20
    scalar = float(scalar) if scalar and scalar > 0 else 2
    mamode = mamode if isinstance(mamode, str) else "ema"
    high = verify_series(high, length)
    low = verify_series(low, length)
    close = verify_series(close, length)
    offset = get_offset(offset)

    if high is None or low is None or close is None: return

    # Calculate Result
    use_tr = kwargs.pop("tr", True)
    if use_tr:
        range_ = true_range(high, low, close)
    else:
        range_ = high_low_range(high, low)

    basis = ma(mamode, close, length=length)
    band = ma(mamode, range_, length=length)

    lower = basis - scalar * band
    upper = basis + scalar * band

    # Offset
    if offset != 0:
        lower = lower.shift(offset)
        basis = basis.shift(offset)
        upper = upper.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        lower.fillna(kwargs["fillna"], inplace=True)
        basis.fillna(kwargs["fillna"], inplace=True)
        upper.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        lower.fillna(method=kwargs["fill_method"], inplace=True)
        basis.fillna(method=kwargs["fill_method"], inplace=True)
        upper.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    _props = f"{mamode.lower()[0] if len(mamode) else ''}_{length}_{scalar}"
    lower.name = f"KCL{_props}"
    basis.name = f"KCB{_props}"
    upper.name = f"KCU{_props}"
    basis.category = upper.category = lower.category = "volatility"

    # Prepare DataFrame to return
    data = {lower.name: lower, basis.name: basis, upper.name: upper}
    kcdf = DataFrame(data)
    kcdf.name = f"KC{_props}"
    kcdf.category = basis.category

    return kcdf
Ejemplo n.º 6
0
def amat(close=None,
         fast=None,
         slow=None,
         lookback=None,
         mamode=None,
         offset=None,
         **kwargs):
    """Indicator: Archer Moving Averages Trends (AMAT)"""
    # Validate Arguments
    fast = int(fast) if fast and fast > 0 else 8
    slow = int(slow) if slow and slow > 0 else 21
    lookback = int(lookback) if lookback and lookback > 0 else 2
    mamode = mamode.lower() if isinstance(mamode, str) else "ema"
    close = verify_series(close, max(fast, slow, lookback))
    offset = get_offset(offset)
    if "length" in kwargs: kwargs.pop("length")

    if close is None: return

    # # Calculate Result
    fast_ma = ma(mamode, close, length=fast, **kwargs)
    slow_ma = ma(mamode, close, length=slow, **kwargs)

    mas_long = long_run(fast_ma, slow_ma, length=lookback)
    mas_short = short_run(fast_ma, slow_ma, length=lookback)

    # Offset
    if offset != 0:
        mas_long = mas_long.shift(offset)
        mas_short = mas_short.shift(offset)

    # # Handle fills
    if "fillna" in kwargs:
        mas_long.fillna(kwargs["fillna"], inplace=True)
        mas_short.fillna(kwargs["fillna"], inplace=True)

    if "fill_method" in kwargs:
        mas_long.fillna(method=kwargs["fill_method"], inplace=True)
        mas_short.fillna(method=kwargs["fill_method"], inplace=True)

    # Prepare DataFrame to return
    amatdf = DataFrame({
        f"AMAT{mamode[0]}_LR_{fast}_{slow}_{lookback}":
        mas_long,
        f"AMAT{mamode[0]}_SR_{fast}_{slow}_{lookback}":
        mas_short
    })

    # Name and Categorize it
    amatdf.name = f"AMAT{mamode[0]}_{fast}_{slow}_{lookback}"
    amatdf.category = "trend"

    return amatdf
Ejemplo n.º 7
0
def stochrsi(close, length=None, rsi_length=None, k=None, d=None, mamode=None, offset=None, **kwargs):
    """Indicator: Stochastic RSI Oscillator (STOCHRSI)"""
    # Validate arguments
    length = length if length and length > 0 else 14
    rsi_length = rsi_length if rsi_length and rsi_length > 0 else 14
    k = k if k and k > 0 else 3
    d = d if d and d > 0 else 3
    close = verify_series(close, max(length, rsi_length, k, d))
    offset = get_offset(offset)
    mamode = mamode if isinstance(mamode, str) else "sma"

    if close is None: return

    # Calculate Result
    rsi_ = rsi(close, length=rsi_length)
    lowest_rsi = rsi_.rolling(length).min()
    highest_rsi = rsi_.rolling(length).max()

    stoch = 100 * (rsi_ - lowest_rsi)
    stoch /= non_zero_range(highest_rsi, lowest_rsi)

    stochrsi_k = ma(mamode, stoch, length=k)
    stochrsi_d = ma(mamode, stochrsi_k, length=d)

    # Offset
    if offset != 0:
        stochrsi_k = stochrsi_k.shift(offset)
        stochrsi_d = stochrsi_d.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        stochrsi_k.fillna(kwargs["fillna"], inplace=True)
        stochrsi_d.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        stochrsi_k.fillna(method=kwargs["fill_method"], inplace=True)
        stochrsi_d.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    _name = "STOCHRSI"
    _props = f"_{length}_{rsi_length}_{k}_{d}"
    stochrsi_k.name = f"{_name}k{_props}"
    stochrsi_d.name = f"{_name}d{_props}"
    stochrsi_k.category = stochrsi_d.category = "momentum"

    # Prepare DataFrame to return
    data = {stochrsi_k.name: stochrsi_k, stochrsi_d.name: stochrsi_d}
    df = DataFrame(data)
    df.name = f"{_name}{_props}"
    df.category = stochrsi_k.category

    return df
Ejemplo n.º 8
0
def stoch(high, low, close, k=None, d=None, smooth_k=None, mamode=None, offset=None, **kwargs):
    """Indicator: Stochastic Oscillator (STOCH)"""
    # Validate arguments
    k = k if k and k > 0 else 14
    d = d if d and d > 0 else 3
    smooth_k = smooth_k if smooth_k and smooth_k > 0 else 3
    _length = max(k, d, smooth_k)
    high = verify_series(high, _length)
    low = verify_series(low, _length)
    close = verify_series(close, _length)
    offset = get_offset(offset)
    mamode = mamode if isinstance(mamode, str) else "sma"

    if high is None or low is None or close is None: return

    # Calculate Result
    lowest_low = low.rolling(k).min()
    highest_high = high.rolling(k).max()

    stoch = 100 * (close - lowest_low)
    stoch /= non_zero_range(highest_high, lowest_low)

    stoch_k = ma(mamode, stoch.loc[stoch.first_valid_index():,], length=smooth_k)
    stoch_d = ma(mamode, stoch_k.loc[stoch_k.first_valid_index():,], length=d)

    # Offset
    if offset != 0:
        stoch_k = stoch_k.shift(offset)
        stoch_d = stoch_d.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        stoch_k.fillna(kwargs["fillna"], inplace=True)
        stoch_d.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        stoch_k.fillna(method=kwargs["fill_method"], inplace=True)
        stoch_d.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    _name = "STOCH"
    _props = f"_{k}_{d}_{smooth_k}"
    stoch_k.name = f"{_name}k{_props}"
    stoch_d.name = f"{_name}d{_props}"
    stoch_k.category = stoch_d.category = "momentum"

    # Prepare DataFrame to return
    data = {stoch_k.name: stoch_k, stoch_d.name: stoch_d}
    df = DataFrame(data)
    df.name = f"{_name}{_props}"
    df.category = stoch_k.category
    return df
Ejemplo n.º 9
0
    def _rvi(source, length, scalar, mode, drift):
        """RVI"""
        std = stdev(source, length)
        pos, neg = unsigned_differences(source, amount=drift)

        pos_std = pos * std
        neg_std = neg * std

        pos_avg = ma(mode, pos_std, length=length)
        neg_avg = ma(mode, neg_std, length=length)

        result = scalar * pos_avg
        result /= pos_avg + neg_avg
        return result
Ejemplo n.º 10
0
def bias(close, length=None, mamode=None, offset=None, **kwargs):
    """Indicator: Bias (BIAS)"""
    # Validate Arguments
    close = verify_series(close)
    length = int(length) if length and length > 0 else 26
    mamode = mamode if isinstance(mamode, str) else "sma"
    offset = get_offset(offset)

    # Calculate Result
    bma = ma(mamode, close, length=length, **kwargs)
    bias = (close / bma) - 1

    # Offset
    if offset != 0:
        bias = bias.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        bias.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        bias.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    bias.name = f"BIAS_{bma.name}"
    bias.category = "momentum"

    return bias
Ejemplo n.º 11
0
def efi(close,
        volume,
        length=None,
        drift=None,
        mamode=None,
        offset=None,
        **kwargs):
    """Indicator: Elder's Force Index (EFI)"""
    # Validate arguments
    close = verify_series(close)
    volume = verify_series(volume)
    length = int(length) if length and length > 0 else 13
    drift = get_drift(drift)
    mamode = mamode if isinstance(mamode, str) else "ema"
    offset = get_offset(offset)

    # Calculate Result
    pv_diff = close.diff(drift) * volume
    efi = ma(mamode, pv_diff, length=length)

    # Offset
    if offset != 0:
        efi = efi.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        efi.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        efi.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    efi.name = f"EFI_{length}"
    efi.category = "volume"

    return efi
Ejemplo n.º 12
0
def bbands(close, length=None, std=None, mamode=None, offset=None, **kwargs):
    """Indicator: Bollinger Bands (BBANDS)"""
    # Validate arguments
    close = verify_series(close)
    length = int(length) if length and length > 0 else 5
    std = float(std) if std and std > 0 else 2.0
    mamode = mamode if isinstance(mamode, str) else "sma"
    offset = get_offset(offset)

    # Calculate Result
    standard_deviation = stdev(close=close, length=length)
    deviations = std * standard_deviation

    mid = ma(mamode, close, length=length, **kwargs)

    lower = mid - deviations
    upper = mid + deviations

    bandwidth = 100 * (upper - lower) / mid

    # Offset
    if offset != 0:
        lower = lower.shift(offset)
        mid = mid.shift(offset)
        upper = upper.shift(offset)
        bandwidth = bandwidth.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        lower.fillna(kwargs["fillna"], inplace=True)
        mid.fillna(kwargs["fillna"], inplace=True)
        upper.fillna(kwargs["fillna"], inplace=True)
        bandwidth.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        lower.fillna(method=kwargs["fill_method"], inplace=True)
        mid.fillna(method=kwargs["fill_method"], inplace=True)
        upper.fillna(method=kwargs["fill_method"], inplace=True)
        bandwidth.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    lower.name = f"BBL_{length}_{std}"
    mid.name = f"BBM_{length}_{std}"
    upper.name = f"BBU_{length}_{std}"
    bandwidth.name = f"BBB_{length}_{std}"
    upper.category = lower.category = "volatility"
    mid.category = bandwidth.category = upper.category

    # Prepare DataFrame to return
    data = {
        lower.name: lower,
        mid.name: mid,
        upper.name: upper,
        bandwidth.name: bandwidth
    }
    bbandsdf = DataFrame(data)
    bbandsdf.name = f"BBANDS_{length}_{std}"
    bbandsdf.category = mid.category

    return bbandsdf
Ejemplo n.º 13
0
def apo(close,
        fast=None,
        slow=None,
        mamode=None,
        talib=None,
        offset=None,
        **kwargs):
    """Indicator: Absolute Price Oscillator (APO)"""
    # Validate Arguments
    fast = int(fast) if fast and fast > 0 else 12
    slow = int(slow) if slow and slow > 0 else 26
    if slow < fast:
        fast, slow = slow, fast
    close = verify_series(close, max(fast, slow))
    mamode = mamode if isinstance(mamode, str) else "sma"
    offset = get_offset(offset)
    mode_tal = bool(talib) if isinstance(talib, bool) else True

    if close is None: return

    # Calculate Result
    if Imports["talib"] and mode_tal:
        from talib import APO
        apo = APO(close, fast, slow, tal_ma(mamode))
    else:
        fastma = ma(mamode, close, length=fast)
        slowma = ma(mamode, close, length=slow)
        apo = fastma - slowma

    # Offset
    if offset != 0:
        apo = apo.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        apo.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        apo.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    apo.name = f"APO_{fast}_{slow}"
    apo.category = "momentum"

    return apo
Ejemplo n.º 14
0
def atr(high,
        low,
        close,
        length=None,
        mamode=None,
        talib=None,
        drift=None,
        offset=None,
        **kwargs):
    """Indicator: Average True Range (ATR)"""
    # Validate arguments
    length = int(length) if length and length > 0 else 14
    mamode = mamode.lower() if mamode and isinstance(mamode, str) else "rma"
    high = verify_series(high, length)
    low = verify_series(low, length)
    close = verify_series(close, length)
    drift = get_drift(drift)
    offset = get_offset(offset)
    mode_tal = bool(talib) if isinstance(talib, bool) else True

    if high is None or low is None or close is None: return

    # Calculate Result
    if Imports["talib"] and mode_tal:
        from talib import ATR
        atr = ATR(high, low, close, length)
    else:
        tr = true_range(high=high, low=low, close=close, drift=drift)
        atr = ma(mamode, tr, length=length)

    percentage = kwargs.pop("percent", False)
    if percentage:
        atr *= 100 / close

    # Offset
    if offset != 0:
        atr = atr.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        atr.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        atr.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    atr.name = f"ATR{mamode[0]}_{length}{'p' if percentage else ''}"
    atr.category = "volatility"

    return atr
Ejemplo n.º 15
0
def thermo(high,
           low,
           length=None,
           long=None,
           short=None,
           mamode=None,
           drift=None,
           offset=None,
           **kwargs):
    """Indicator: Elders Thermometer (THERMO)"""
    # Validate arguments
    high = verify_series(high)
    low = verify_series(low)
    length = int(length) if length and length > 0 else 20
    long = float(long) if long and long > 0 else 2
    short = float(short) if short and short > 0 else 0.5
    mamode = mamode if isinstance(mamode, str) else "ema"
    drift = get_drift(drift)
    offset = get_offset(offset)
    asint = kwargs.pop("asint", True)

    # Calculate Result
    thermoL = (low.shift(drift) - low).abs()
    thermoH = (high - high.shift(drift)).abs()

    thermo = thermoL
    thermo = thermo.where(thermoH < thermoL, thermoH)
    thermo.index = high.index

    thermo_ma = ma(mamode, thermo, length=length)

    # Create signals
    thermo_long = thermo < (thermo_ma * long)
    thermo_short = thermo > (thermo_ma * short)

    # Binary output, useful for signals
    if asint:
        thermo_long = thermo_long.astype(int)
        thermo_short = thermo_short.astype(int)

    # Offset
    if offset != 0:
        thermo = thermo.shift(offset)
        thermo_ma = thermo_ma.shift(offset)
        therthermo_longmo_ma = thermo_ma.shift(offset)
        thermo_short = thermo_ma.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        thermo.fillna(kwargs["fillna"], inplace=True)
        thermo_ma.fillna(kwargs["fillna"], inplace=True)
        thermo_long.fillna(kwargs["fillna"], inplace=True)
        thermo_short.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        thermo.fillna(method=kwargs["fill_method"], inplace=True)
        thermo_ma.fillna(method=kwargs["fill_method"], inplace=True)
        thermo_long.fillna(method=kwargs["fill_method"], inplace=True)
        thermo_short.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    _props = f"_{length}_{long}_{short}"
    thermo.name = f"THERMO{_props}"
    thermo_ma.name = f"THERMOma{_props}"
    thermo_long.name = f"THERMOl{_props}"
    thermo_short.name = f"THERMOs{_props}"

    thermo.category = thermo_ma.category = thermo_long.category = thermo_short.category = "volatility"

    # Prepare Dataframe to return
    data = {
        thermo.name: thermo,
        thermo_ma.name: thermo_ma,
        thermo_long.name: thermo_long,
        thermo_short.name: thermo_short
    }
    df = DataFrame(data)
    df.name = f"THERMO{_props}"
    df.category = thermo.category

    return df
Ejemplo n.º 16
0
def bbands(close,
           length=None,
           std=None,
           mamode=None,
           ddof=0,
           offset=None,
           **kwargs):
    """Indicator: Bollinger Bands (BBANDS)"""
    # Validate arguments
    length = int(length) if length and length > 0 else 5
    std = float(std) if std and std > 0 else 2.0
    mamode = mamode if isinstance(mamode, str) else "sma"
    ddof = int(ddof) if ddof >= 0 and ddof < length else 1
    close = verify_series(close, length)
    offset = get_offset(offset)

    if close is None: return

    # Calculate Result
    if Imports["talib"]:
        from talib import BBANDS
        upper, mid, lower = BBANDS(close, length)
    else:
        standard_deviation = stdev(close=close, length=length, ddof=ddof)
        deviations = std * standard_deviation
        # deviations = std * standard_deviation.loc[standard_deviation.first_valid_index():,]

        mid = ma(mamode, close, length=length, **kwargs)
        lower = mid - deviations
        upper = mid + deviations

    ulr = non_zero_range(upper, lower)
    bandwidth = 100 * ulr / mid
    percent = non_zero_range(close, lower) / ulr

    # Offset
    if offset != 0:
        lower = lower.shift(offset)
        mid = mid.shift(offset)
        upper = upper.shift(offset)
        bandwidth = bandwidth.shift(offset)
        percent = bandwidth.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        lower.fillna(kwargs["fillna"], inplace=True)
        mid.fillna(kwargs["fillna"], inplace=True)
        upper.fillna(kwargs["fillna"], inplace=True)
        bandwidth.fillna(kwargs["fillna"], inplace=True)
        percent.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        lower.fillna(method=kwargs["fill_method"], inplace=True)
        mid.fillna(method=kwargs["fill_method"], inplace=True)
        upper.fillna(method=kwargs["fill_method"], inplace=True)
        bandwidth.fillna(method=kwargs["fill_method"], inplace=True)
        percent.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    lower.name = f"BBL_{length}_{std}"
    mid.name = f"BBM_{length}_{std}"
    upper.name = f"BBU_{length}_{std}"
    bandwidth.name = f"BBB_{length}_{std}"
    percent.name = f"BBP_{length}_{std}"
    upper.category = lower.category = "volatility"
    mid.category = bandwidth.category = upper.category

    # Prepare DataFrame to return
    data = {
        lower.name: lower,
        mid.name: mid,
        upper.name: upper,
        bandwidth.name: bandwidth,
        percent.name: percent
    }
    bbandsdf = DataFrame(data)
    bbandsdf.name = f"BBANDS_{length}_{std}"
    bbandsdf.category = mid.category

    return bbandsdf
Ejemplo n.º 17
0
def qqe(close,
        length=None,
        smooth=None,
        factor=None,
        mamode=None,
        drift=None,
        offset=None,
        **kwargs):
    """Indicator: Quantitative Qualitative Estimation (QQE)"""
    # Validate arguments
    close = verify_series(close)
    length = int(length) if length and length > 0 else 14
    smooth = int(smooth) if smooth and smooth > 0 else 5
    factor = float(factor) if factor else 4.236
    mamode = mamode if isinstance(mamode, str) else "ema"
    drift = get_drift(drift)
    offset = get_offset(offset)

    # Calculate Result
    rsi_ = rsi(close, length)
    _mode = mamode.lower()[0] if mamode != "ema" else ""
    rsi_ma = ma(mamode, rsi_, length=smooth)

    # RSI MA True Range
    rsi_ma_tr = rsi_ma.diff(drift).abs()

    # Double Smooth the RSI MA True Range using Wilder's Length with a default
    # width of 4.236.
    wilders_length = 2 * length - 1
    smoothed_rsi_tr_ma = ma("ema", rsi_ma_tr, length=wilders_length)
    dar = factor * ma("ema", smoothed_rsi_tr_ma, length=wilders_length)

    # Create the Upper and Lower Bands around RSI MA.
    upperband = rsi_ma + dar
    lowerband = rsi_ma - dar

    m = close.size
    long = Series(0, index=close.index)
    short = Series(0, index=close.index)
    trend = Series(1, index=close.index)
    qqe = Series(rsi_ma.iloc[0], index=close.index)
    qqe_long = Series(npNaN, index=close.index)
    qqe_short = Series(npNaN, index=close.index)

    for i in range(1, m):
        c_rsi, p_rsi = rsi_ma.iloc[i], rsi_ma.iloc[i - 1]
        c_long, p_long = long.iloc[i - 1], long.iloc[i - 2]
        c_short, p_short = short.iloc[i - 1], short.iloc[i - 2]

        # Long Line
        if p_rsi > c_long and c_rsi > c_long:
            long.iloc[i] = npMaximum(c_long, lowerband.iloc[i])
        else:
            long.iloc[i] = lowerband.iloc[i]

        # Short Line
        if p_rsi < c_short and c_rsi < c_short:
            short.iloc[i] = npMinimum(c_short, upperband.iloc[i])
        else:
            short.iloc[i] = upperband.iloc[i]

        # Trend & QQE Calculation
        # Long: Current RSI_MA value Crosses the Prior Short Line Value
        # Short: Current RSI_MA Crosses the Prior Long Line Value
        if (c_rsi > c_short and p_rsi < p_short) or (c_rsi <= c_short
                                                     and p_rsi >= p_short):
            trend.iloc[i] = 1
            qqe.iloc[i] = qqe_long.iloc[i] = long.iloc[i]
        elif (c_rsi > c_long and p_rsi < p_long) or (c_rsi <= c_long
                                                     and p_rsi >= p_long):
            trend.iloc[i] = -1
            qqe.iloc[i] = qqe_short.iloc[i] = short.iloc[i]
        else:
            trend.iloc[i] = trend.iloc[i - 1]
            if trend.iloc[i] == 1:
                qqe.iloc[i] = qqe_long.iloc[i] = long.iloc[i]
            else:
                qqe.iloc[i] = qqe_short.iloc[i] = short.iloc[i]

    # Offset
    if offset != 0:
        rsi_ma = rsi_ma.shift(offset)
        qqe = qqe.shift(offset)
        long = long.shift(offset)
        short = short.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        rsi_ma.fillna(kwargs["fillna"], inplace=True)
        qqe.fillna(kwargs["fillna"], inplace=True)
        qqe_long.fillna(kwargs["fillna"], inplace=True)
        qqe_short.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        rsi_ma.fillna(method=kwargs["fill_method"], inplace=True)
        qqe.fillna(method=kwargs["fill_method"], inplace=True)
        qqe_long.fillna(method=kwargs["fill_method"], inplace=True)
        qqe_short.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    _props = f"{_mode}_{length}_{smooth}_{factor}"
    qqe.name = f"QQE{_props}"
    rsi_ma.name = f"QQE{_props}_RSI{_mode.upper()}MA"
    qqe_long.name = f"QQEl{_props}"
    qqe_short.name = f"QQEs{_props}"
    qqe.category = rsi_ma.category = "momentum"
    qqe_long.category = qqe_short.category = qqe.category

    # Prepare DataFrame to return
    data = {
        qqe.name: qqe,
        rsi_ma.name: rsi_ma,
        # long.name: long, short.name: short
        qqe_long.name: qqe_long,
        qqe_short.name: qqe_short
    }
    df = DataFrame(data)
    df.name = f"QQE{_props}"
    df.category = qqe.category

    return df
Ejemplo n.º 18
0
def adx(high,
        low,
        close,
        length=None,
        lensig=None,
        mamode=None,
        scalar=None,
        drift=None,
        offset=None,
        **kwargs):
    """Indicator: ADX"""
    # Validate Arguments
    length = length if length and length > 0 else 14
    lensig = lensig if lensig and lensig > 0 else length
    mamode = mamode if isinstance(mamode, str) else "rma"
    scalar = float(scalar) if scalar else 100
    high = verify_series(high, length)
    low = verify_series(low, length)
    close = verify_series(close, length)
    drift = get_drift(drift)
    offset = get_offset(offset)

    if high is None or low is None or close is None: return

    # Calculate Result
    atr_ = atr(high=high, low=low, close=close, length=length)

    up = high - high.shift(drift)  # high.diff(drift)
    dn = low.shift(drift) - low  # low.diff(-drift).shift(drift)

    pos = ((up > dn) & (up > 0)) * up
    neg = ((dn > up) & (dn > 0)) * dn

    pos = pos.apply(zero)
    neg = neg.apply(zero)

    k = scalar / atr_
    dmp = k * ma(mamode, pos, length=length)
    dmn = k * ma(mamode, neg, length=length)

    dx = scalar * (dmp - dmn).abs() / (dmp + dmn)
    adx = ma(mamode, dx, length=lensig)

    # Offset
    if offset != 0:
        dmp = dmp.shift(offset)
        dmn = dmn.shift(offset)
        adx = adx.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        adx.fillna(kwargs["fillna"], inplace=True)
        dmp.fillna(kwargs["fillna"], inplace=True)
        dmn.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        adx.fillna(method=kwargs["fill_method"], inplace=True)
        dmp.fillna(method=kwargs["fill_method"], inplace=True)
        dmn.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    adx.name = f"ADX_{lensig}"
    dmp.name = f"DMP_{length}"
    dmn.name = f"DMN_{length}"

    adx.category = dmp.category = dmn.category = "trend"

    # Prepare DataFrame to return
    data = {adx.name: adx, dmp.name: dmp, dmn.name: dmn}
    adxdf = DataFrame(data)
    adxdf.name = f"ADX_{lensig}"
    adxdf.category = "trend"

    return adxdf
Ejemplo n.º 19
0
def tsi(close,
        fast=None,
        slow=None,
        signal=None,
        scalar=None,
        mamode=None,
        drift=None,
        offset=None,
        **kwargs):
    """Indicator: True Strength Index (TSI)"""
    # Validate Arguments
    fast = int(fast) if fast and fast > 0 else 13
    slow = int(slow) if slow and slow > 0 else 25
    signal = int(signal) if signal and signal > 0 else 13
    # if slow < fast:
    #     fast, slow = slow, fast
    scalar = float(scalar) if scalar else 100
    close = verify_series(close, max(fast, slow))
    drift = get_drift(drift)
    offset = get_offset(offset)
    mamode = mamode if isinstance(mamode, str) else "ema"
    if "length" in kwargs: kwargs.pop("length")

    if close is None: return

    # Calculate Result
    diff = close.diff(drift)
    slow_ema = ema(close=diff, length=slow, **kwargs)
    fast_slow_ema = ema(close=slow_ema, length=fast, **kwargs)

    abs_diff = diff.abs()
    abs_slow_ema = ema(close=abs_diff, length=slow, **kwargs)
    abs_fast_slow_ema = ema(close=abs_slow_ema, length=fast, **kwargs)

    tsi = scalar * fast_slow_ema / abs_fast_slow_ema
    tsi_signal = ma(mamode, tsi, length=signal)

    # Offset
    if offset != 0:
        tsi = tsi.shift(offset)
        tsi_signal = tsi_signal.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        tsi.fillna(kwargs["fillna"], inplace=True)
        tsi_signal.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        tsi.fillna(method=kwargs["fill_method"], inplace=True)
        tsi_signal.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    tsi.name = f"TSI_{fast}_{slow}_{signal}"
    tsi_signal.name = f"TSIs_{fast}_{slow}_{signal}"
    tsi.category = tsi_signal.category = "momentum"

    # Prepare DataFrame to return
    df = DataFrame({tsi.name: tsi, tsi_signal.name: tsi_signal})
    df.name = f"TSI_{fast}_{slow}_{signal}"
    df.category = "momentum"

    return df
Ejemplo n.º 20
0
def aobv(close, volume, fast=None, slow=None, mamode=None, max_lookback=None, min_lookback=None, offset=None, **kwargs):
    """Indicator: Archer On Balance Volume (AOBV)"""
    # Validate arguments
    close = verify_series(close)
    volume = verify_series(volume)
    offset = get_offset(offset)
    fast = int(fast) if fast and fast > 0 else 4
    slow = int(slow) if slow and slow > 0 else 12
    max_lookback = int(max_lookback) if max_lookback and max_lookback > 0 else 2
    min_lookback = int(min_lookback) if min_lookback and min_lookback > 0 else 2
    if slow < fast:
        fast, slow = slow, fast
    mamode = mamode if isinstance(mamode, str) else "ema"
    if "length" in kwargs: kwargs.pop("length")
    run_length = kwargs.pop("run_length", 2)

    # Calculate Result
    obv_ = obv(close=close, volume=volume, **kwargs)
    maf = ma(mamode, obv_, length=fast, **kwargs)
    mas = ma(mamode, obv_, length=slow, **kwargs)

    # When MAs are long and short
    obv_long = long_run(maf, mas, length=run_length)
    obv_short = short_run(maf, mas, length=run_length)

    # Offset
    if offset != 0:
        obv_ = obv_.shift(offset)
        maf = maf.shift(offset)
        mas = mas.shift(offset)
        obv_long = obv_long.shift(offset)
        obv_short = obv_short.shift(offset)

    # # Handle fills
    if "fillna" in kwargs:
        obv_.fillna(kwargs["fillna"], inplace=True)
        maf.fillna(kwargs["fillna"], inplace=True)
        mas.fillna(kwargs["fillna"], inplace=True)
        obv_long.fillna(kwargs["fillna"], inplace=True)
        obv_short.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        obv_.fillna(method=kwargs["fill_method"], inplace=True)
        maf.fillna(method=kwargs["fill_method"], inplace=True)
        mas.fillna(method=kwargs["fill_method"], inplace=True)
        obv_long.fillna(method=kwargs["fill_method"], inplace=True)
        obv_short.fillna(method=kwargs["fill_method"], inplace=True)

    # Prepare DataFrame to return
    _mode = mamode.lower()[0] if len(mamode) else ""
    data = {
        obv_.name: obv_,
        f"OBV_min_{min_lookback}": obv_.rolling(min_lookback).min(),
        f"OBV_max_{max_lookback}": obv_.rolling(max_lookback).max(),
        f"OBV{_mode}_{fast}": maf,
        f"OBV{_mode}_{slow}": mas,
        f"AOBV_LR_{run_length}": obv_long,
        f"AOBV_SR_{run_length}": obv_short,
    }
    aobvdf = DataFrame(data)

    # Name and Categorize it
    aobvdf.name = f"AOBV{_mode}_{fast}_{slow}_{min_lookback}_{max_lookback}_{run_length}"
    aobvdf.category = "volume"

    return aobvdf
Ejemplo n.º 21
0
def pmax(high,
         low,
         close,
         length=None,
         multiplier=None,
         mamode=None,
         offset=None,
         **kwargs):
    """Indicator: PMAX"""
    # Validate Arguments
    length = int(length) if length and length > 0 else 10
    mamode = mamode.lower() if mamode and isinstance(mamode, str) else "ema"
    multiplier = float(multiplier) if multiplier and multiplier > 0 else 3.0

    high = verify_series(high, length)
    low = verify_series(low, length)
    close = verify_series(close, length)
    offset = get_offset(offset)

    if high is None or low is None or close is None: return

    # Calculate Results

    m = close.size
    dir_, trend = [1] * m, [0] * m
    long, short = [npNaN] * m, [npNaN] * m

    hl2_ = hl2(high, low)
    mavg = ma(mamode, hl2_, length=length)
    matr = multiplier * atr(high, low, close, length)
    upperband = mavg + matr
    lowerband = mavg - matr

    for i in range(1, m):
        if mavg.iloc[i] > upperband.iloc[i - 1]:
            dir_[i] = 1
        elif mavg.iloc[i] < lowerband.iloc[i - 1]:
            dir_[i] = -1
        else:
            dir_[i] = dir_[i - 1]
            if dir_[i] > 0 and lowerband.iloc[i] < lowerband.iloc[i - 1]:
                lowerband.iloc[i] = lowerband.iloc[i - 1]
            if dir_[i] < 0 and upperband.iloc[i] > upperband.iloc[i - 1]:
                upperband.iloc[i] = upperband.iloc[i - 1]

        if dir_[i] > 0:
            trend[i] = long[i] = lowerband.iloc[i]
        else:
            trend[i] = short[i] = upperband.iloc[i]

    # Prepare DataFrame to return
    _props = f"_{length}_{multiplier}"
    df = DataFrame(
        {
            f"PMAX{_props}": trend,
            f"PMAXd{_props}": dir_,
            f"PMAXSL{_props}": mavg,
            f"PMAXlong{_props}": long,
            f"PMAXshort{_props}": short
        },
        index=close.index)

    df.name = f"PMAX{_props}"
    df.category = "overlap"

    # Apply offset if needed
    if offset != 0:
        df = df.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        df.fillna(kwargs["fillna"], inplace=True)

    if "fill_method" in kwargs:
        df.fillna(method=kwargs["fill_method"], inplace=True)

    return df
Ejemplo n.º 22
0
def ppo(close,
        fast=None,
        slow=None,
        signal=None,
        scalar=None,
        mamode=None,
        offset=None,
        **kwargs):
    """Indicator: Percentage Price Oscillator (PPO)"""
    # Validate Arguments
    fast = int(fast) if fast and fast > 0 else 12
    slow = int(slow) if slow and slow > 0 else 26
    signal = int(signal) if signal and signal > 0 else 9
    scalar = float(scalar) if scalar else 100
    mamode = mamode if isinstance(mamode, str) else "sma"
    if slow < fast:
        fast, slow = slow, fast
    close = verify_series(close, max(fast, slow, signal))
    offset = get_offset(offset)

    if close is None: return

    # Calculate Result
    if Imports["talib"]:
        from talib import PPO
        ppo = PPO(close, fast, slow)
    else:
        fastma = ma(mamode, close, length=fast)
        slowma = ma(mamode, close, length=slow)
        ppo = scalar * (fastma - slowma)
        ppo /= slowma

    signalma = ma("ema", ppo, length=signal)
    histogram = ppo - signalma

    # Offset
    if offset != 0:
        ppo = ppo.shift(offset)
        histogram = histogram.shift(offset)
        signalma = signalma.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        ppo.fillna(kwargs["fillna"], inplace=True)
        histogram.fillna(kwargs["fillna"], inplace=True)
        signalma.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        ppo.fillna(method=kwargs["fill_method"], inplace=True)
        histogram.fillna(method=kwargs["fill_method"], inplace=True)
        signalma.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    _props = f"_{fast}_{slow}_{signal}"
    ppo.name = f"PPO{_props}"
    histogram.name = f"PPOh{_props}"
    signalma.name = f"PPOs{_props}"
    ppo.category = histogram.category = signalma.category = "momentum"

    # Prepare DataFrame to return
    data = {ppo.name: ppo, histogram.name: histogram, signalma.name: signalma}
    df = DataFrame(data)
    df.name = f"PPO{_props}"
    df.category = ppo.category

    return df