Ejemplo n.º 1
0
def keltnerChannel(df, kc_len):
    df_kc = df.ta.kc(length=kc_len)
    kc_low = df_kc.iloc[:, 0]
    kc_upp = df_kc.iloc[:, 2]
    kc_ul = ta.above(df.close, kc_upp)
    kc_ll = ta.below(df.close, kc_low)
    kc_ul.iloc[:kc_len] = np.nan
    kc_ll.iloc[:kc_len] = np.nan
    return kc_ll, kc_ul
Ejemplo n.º 2
0
def donchianChannel(df, dc_llen, dc_ulen):
    df_dc = ta.donchian(df.close, uper_lenght=dc_ulen, lower_length=dc_llen)
    dc_low = df_dc.iloc[:, 0]
    dc_upp = df_dc.iloc[:, 2]
    dc_ul = ta.above(df.close, dc_upp)
    dc_ll = ta.below(df.close, dc_low)
    dc_ul.iloc[:max([dc_llen, dc_ulen])] = np.nan
    dc_ll.iloc[:max([dc_llen, dc_ulen])] = np.nan
    return dc_ll, dc_ul
Ejemplo n.º 3
0
def bollingerBands(df, bb_per):
    df_bb = df.ta.bbands(length=bb_per)
    bol_low = df_bb.iloc[:, 0]
    bol_upp = df_bb.iloc[:, 2]
    bb_ll = ta.below(df.close, bol_low)
    bb_ul = ta.above(df.close, bol_upp)
    bb_ll.iloc[:bb_per] = np.nan
    bb_ul.iloc[:bb_per] = np.nan
    return bb_ll, bb_ul
Ejemplo n.º 4
0
def movingAverage(df, fast_p, slow_p):
    smas = df.ta.sma(length=fast_p)
    smal = df.ta.sma(length=slow_p)
    ma_buy = ta.cross(smas, smal, above=True)
    ma_sell = ta.cross(smas, smal, above=False)
    ma_upw = ta.above(smas, smal)
    ma_buy.iloc[:fast_p] = np.nan
    ma_sell.iloc[:fast_p] = np.nan
    ma_upw.iloc[:fast_p] = np.nan
    return ma_buy, ma_sell, ma_upw
Ejemplo n.º 5
0
def adx(df, adx_len, adx_ul):
    df_adx = df.ta.adx(length=adx_len)
    adx, dmp, dmm = df_adx.iloc[:, 0], df_adx.iloc[:, 1], df_adx.iloc[:, 2]
    adx_force = ta.above_value(adx, adx_ul)
    adx_buy = ta.cross(dmp, dmm, above=True)
    adx_sell = ta.cross(dmp, dmm, above=False)
    adx_upw = ta.above(dmp, dmm)
    adx_force.iloc[:adx_len] = np.nan
    adx_buy.iloc[:adx_len] = np.nan
    adx_sell.iloc[:adx_len] = np.nan
    adx_upw.iloc[:adx_len] = np.nan
    return adx_force, adx_buy, adx_sell, adx_upw
Ejemplo n.º 6
0
def macd(df, macd_fast_p, macd_slow_p, macd_sign_p):
    df_macd = df.ta.macd(fast=macd_fast_p,
                         slow=macd_slow_p,
                         signal=macd_sign_p)
    macd_macd = df_macd.iloc[:, 0]
    macd_sign = df_macd.iloc[:, 2]
    macd_buy = ta.cross(macd_sign, macd_macd, above=True)
    macd_sell = ta.cross(macd_sign, macd_macd, above=False)
    macd_upw = ta.above(macd_sign, macd_macd)
    macd_buy.iloc[:macd_slow_p] = np.nan
    macd_sell.iloc[:macd_slow_p] = np.nan
    macd_upw.iloc[:macd_slow_p] = np.nan
    return macd_buy, macd_sell, macd_upw