Ejemplo n.º 1
0
def test_maintainable():
    urn = "urn:sdmx:org.sdmx.infomodel.conceptscheme.ConceptScheme=IT1:VARIAB_ALL(9.6)"
    ma = model.MaintainableArtefact(id="VARIAB_ALL", urn=urn)

    # Version is parsed from URN
    assert ma.version == "9.6"

    # Mismatch raises an exception
    with pytest.raises(ValueError, match="Version 9.7 does not match URN"):
        model.MaintainableArtefact(version="9.7", urn=urn)

    # Maintainer is parsed from URN
    assert ma.maintainer == model.Agency(id="IT1")

    # Mismatch raises an exception
    with pytest.raises(ValueError, match="Maintainer FOO does not match URN"):
        model.MaintainableArtefact(maintainer=model.Agency(id="FOO"), urn=urn)
Ejemplo n.º 2
0
def test_flat():
    # Create a bare Message
    msg = DataMessage()

    # Recreate the content from exr-flat.json
    header = Header(
        id="62b5f19d-f1c9-495d-8446-a3661ed24753",
        prepared="2012-11-29T08:40:26Z",
        sender=model.Agency(id="ECB"),
    )
    msg.header = header

    ds = DataSet()

    # Create a Key and attributes
    key = Key(
        FREQ="D",
        CURRENCY="NZD",
        CURRENCY_DENOM="EUR",
        EXR_TYPE="SP00",
        EXR_SUFFIX="A",
        TIME_PERIOD="2013-01-18",
    )
    obs_status = DataAttribute(id="OBS_STATUS")
    attr = {"OBS_STATUS": AttributeValue(value_for=obs_status, value="A")}

    ds.obs.append(
        Observation(dimension=key, value=1.5931, attached_attribute=attr))

    key = key.copy(TIME_PERIOD="2013-01-21")
    ds.obs.append(
        Observation(dimension=key, value=1.5925, attached_attribute=attr))

    key = key.copy(CURRENCY="RUB", TIME_PERIOD="2013-01-18")
    ds.obs.append(
        Observation(dimension=key, value=40.3426, attached_attribute=attr))

    key = key.copy(TIME_PERIOD="2013-01-21")
    ds.obs.append(
        Observation(dimension=key, value=40.3000, attached_attribute=attr))

    msg.data.append(ds)

    # Write to pd.Dataframe
    df1 = pandasdmx.to_pandas(msg)

    with specimen("flat.json") as f:
        ref = pandasdmx.read_sdmx(f)
    df2 = pandasdmx.to_pandas(ref)

    assert_pd_equal(df1, df2)
Ejemplo n.º 3
0
    def read_message(self, source, dsd=None):
        # Initialize message instance
        msg = DataMessage()

        if dsd:  # pragma: no cover
            # Store explicit DSD, if any
            msg.dataflow.structure = dsd

        # Read JSON
        source.default_size = -1
        tree = json.load(source)

        # Read the header
        # TODO handle KeyError here
        elem = tree["header"]
        msg.header = Header(
            id=elem["id"],
            prepared=elem["prepared"],
            sender=model.Agency(**elem["sender"]),
        )

        # pre-fetch some structures for efficient use in series and obs
        structure = tree["structure"]

        # Read dimensions and values
        self._dim_level = dict()
        self._dim_values = dict()
        for level_name, level in structure["dimensions"].items():
            for elem in level:
                # Create the Dimension
                d = msg.structure.dimensions.getdefault(
                    id=elem["id"], order=elem.get("keyPosition", -1)
                )

                # Record the level it appears at
                self._dim_level[d] = level_name

                # Record values
                self._dim_values[d] = list()
                for value in elem.get("values", []):
                    self._dim_values[d].append(KeyValue(id=d.id, value=value["id"]))

        # Assign an order to an implicit dimension
        for d in msg.structure.dimensions:
            if d.order == -1:
                d.order = len(msg.structure.dimensions)

        # Determine the dimension at the observation level
        if all([level == "observation" for level in self._dim_level.values()]):
            dim_at_obs = AllDimensions
        else:
            dim_at_obs = [
                dim for dim, level in self._dim_level.items() if level == "observation"
            ]

        msg.observation_dimension = dim_at_obs

        # Read attributes and values
        self._attr_level = dict()
        self._attr_values = dict()
        for level_name, level in structure["attributes"].items():
            for attr in level:
                # Create a DataAttribute in the DSD
                a = msg.structure.attributes.getdefault(
                    id=attr["id"], concept_identity=Concept(name=attr["name"])
                )

                # Record the level it appears at
                self._attr_level[a] = level_name

                # Record its values
                self._attr_values[a] = list()
                for value in attr.get("values", []):
                    self._attr_values[a].append(
                        AttributeValue(value=value["name"], value_for=a)
                    )

        self.msg = msg

        # Make a SeriesKey for Observations in this DataSet
        ds_key = self._make_key("dataSet")

        # Read DataSets
        for ds in tree["dataSets"]:
            msg.data.append(self.read_dataset(ds, ds_key))

        return msg
Ejemplo n.º 4
0
    def __init__(self, elem, cls_hint=None):
        parent_tag = elem.tag

        try:
            # Use the first child
            elem = elem[0]
        except IndexError:
            raise NotReference

        # Extract information from the XML element
        if elem.tag == "Ref":
            # Element attributes give target_id, id, and version
            target_id = elem.attrib["id"]
            agency_id = elem.attrib.get("agencyID", None)
            id = elem.attrib.get("maintainableParentID", target_id)
            version = elem.attrib.get(
                "maintainableParentVersion", None
            ) or elem.attrib.get("version", None)

            # Attributes of the element itself, if any
            args = (elem.attrib.get("class", None), elem.attrib.get("package", None))
        elif elem.tag == "URN":
            match = pandasdmx.urn.match(elem.text)

            # If the URN doesn't specify an item ID, it is probably a reference to a
            # MaintainableArtefact, so target_id and id are the same
            target_id = match["item_id"] or match["id"]

            agency_id = match["agency"]
            id = match["id"]
            version = match["version"]

            args = (match["class"], match["package"])
        else:
            raise NotReference

        # Find the target class
        target_cls = model.get_class(*args)

        if target_cls is None:
            # Try the parent tag name
            target_cls = class_for_tag(parent_tag)

        if cls_hint and (target_cls is None or issubclass(cls_hint, target_cls)):
            # Hinted class is more specific than target_cls, or failed to find a target
            # class above
            target_cls = cls_hint

        self.maintainable = issubclass(target_cls, model.MaintainableArtefact)

        if self.maintainable:
            # MaintainableArtefact is the same as the target
            cls, id = target_cls, target_id
        else:
            # Get the class for the parent MaintainableArtefact
            cls = model.parent_class(target_cls)

        # Store
        self.cls = cls
        self.agency = model.Agency(id=agency_id) if agency_id else _NO_AGENCY
        self.id = id
        self.version = version
        self.target_cls = target_cls
        self.target_id = target_id
Ejemplo n.º 5
0
    return decorator


def to_tags(*args):
    return chain(*[[qname(tag) for tag in arg.split()] for arg in args])


PARSE.update({k: None for k in product(to_tags(SKIP), ["start", "end"])})


class NotReference(Exception):
    pass


_NO_AGENCY = model.Agency()


class Reference:
    """Temporary class for references.

    - `cls`, `id`, `version`, and `agency_id` are always for a MaintainableArtefact.
    - If the reference target is a MaintainableArtefact (`maintainable` is True),
      `target_cls` and `target_id` are identical to `cls` and `id`, respectively.
    - If the target is not maintainable, `target_cls` and `target_id` describe it.

    `cls_hint` is an optional hint for when the object is instantiated, i.e. a more
    specific override for `cls`/`target_cls`.
    """

    def __init__(self, elem, cls_hint=None):