def test_maintainable(): urn = "urn:sdmx:org.sdmx.infomodel.conceptscheme.ConceptScheme=IT1:VARIAB_ALL(9.6)" ma = model.MaintainableArtefact(id="VARIAB_ALL", urn=urn) # Version is parsed from URN assert ma.version == "9.6" # Mismatch raises an exception with pytest.raises(ValueError, match="Version 9.7 does not match URN"): model.MaintainableArtefact(version="9.7", urn=urn) # Maintainer is parsed from URN assert ma.maintainer == model.Agency(id="IT1") # Mismatch raises an exception with pytest.raises(ValueError, match="Maintainer FOO does not match URN"): model.MaintainableArtefact(maintainer=model.Agency(id="FOO"), urn=urn)
def test_flat(): # Create a bare Message msg = DataMessage() # Recreate the content from exr-flat.json header = Header( id="62b5f19d-f1c9-495d-8446-a3661ed24753", prepared="2012-11-29T08:40:26Z", sender=model.Agency(id="ECB"), ) msg.header = header ds = DataSet() # Create a Key and attributes key = Key( FREQ="D", CURRENCY="NZD", CURRENCY_DENOM="EUR", EXR_TYPE="SP00", EXR_SUFFIX="A", TIME_PERIOD="2013-01-18", ) obs_status = DataAttribute(id="OBS_STATUS") attr = {"OBS_STATUS": AttributeValue(value_for=obs_status, value="A")} ds.obs.append( Observation(dimension=key, value=1.5931, attached_attribute=attr)) key = key.copy(TIME_PERIOD="2013-01-21") ds.obs.append( Observation(dimension=key, value=1.5925, attached_attribute=attr)) key = key.copy(CURRENCY="RUB", TIME_PERIOD="2013-01-18") ds.obs.append( Observation(dimension=key, value=40.3426, attached_attribute=attr)) key = key.copy(TIME_PERIOD="2013-01-21") ds.obs.append( Observation(dimension=key, value=40.3000, attached_attribute=attr)) msg.data.append(ds) # Write to pd.Dataframe df1 = pandasdmx.to_pandas(msg) with specimen("flat.json") as f: ref = pandasdmx.read_sdmx(f) df2 = pandasdmx.to_pandas(ref) assert_pd_equal(df1, df2)
def read_message(self, source, dsd=None): # Initialize message instance msg = DataMessage() if dsd: # pragma: no cover # Store explicit DSD, if any msg.dataflow.structure = dsd # Read JSON source.default_size = -1 tree = json.load(source) # Read the header # TODO handle KeyError here elem = tree["header"] msg.header = Header( id=elem["id"], prepared=elem["prepared"], sender=model.Agency(**elem["sender"]), ) # pre-fetch some structures for efficient use in series and obs structure = tree["structure"] # Read dimensions and values self._dim_level = dict() self._dim_values = dict() for level_name, level in structure["dimensions"].items(): for elem in level: # Create the Dimension d = msg.structure.dimensions.getdefault( id=elem["id"], order=elem.get("keyPosition", -1) ) # Record the level it appears at self._dim_level[d] = level_name # Record values self._dim_values[d] = list() for value in elem.get("values", []): self._dim_values[d].append(KeyValue(id=d.id, value=value["id"])) # Assign an order to an implicit dimension for d in msg.structure.dimensions: if d.order == -1: d.order = len(msg.structure.dimensions) # Determine the dimension at the observation level if all([level == "observation" for level in self._dim_level.values()]): dim_at_obs = AllDimensions else: dim_at_obs = [ dim for dim, level in self._dim_level.items() if level == "observation" ] msg.observation_dimension = dim_at_obs # Read attributes and values self._attr_level = dict() self._attr_values = dict() for level_name, level in structure["attributes"].items(): for attr in level: # Create a DataAttribute in the DSD a = msg.structure.attributes.getdefault( id=attr["id"], concept_identity=Concept(name=attr["name"]) ) # Record the level it appears at self._attr_level[a] = level_name # Record its values self._attr_values[a] = list() for value in attr.get("values", []): self._attr_values[a].append( AttributeValue(value=value["name"], value_for=a) ) self.msg = msg # Make a SeriesKey for Observations in this DataSet ds_key = self._make_key("dataSet") # Read DataSets for ds in tree["dataSets"]: msg.data.append(self.read_dataset(ds, ds_key)) return msg
def __init__(self, elem, cls_hint=None): parent_tag = elem.tag try: # Use the first child elem = elem[0] except IndexError: raise NotReference # Extract information from the XML element if elem.tag == "Ref": # Element attributes give target_id, id, and version target_id = elem.attrib["id"] agency_id = elem.attrib.get("agencyID", None) id = elem.attrib.get("maintainableParentID", target_id) version = elem.attrib.get( "maintainableParentVersion", None ) or elem.attrib.get("version", None) # Attributes of the element itself, if any args = (elem.attrib.get("class", None), elem.attrib.get("package", None)) elif elem.tag == "URN": match = pandasdmx.urn.match(elem.text) # If the URN doesn't specify an item ID, it is probably a reference to a # MaintainableArtefact, so target_id and id are the same target_id = match["item_id"] or match["id"] agency_id = match["agency"] id = match["id"] version = match["version"] args = (match["class"], match["package"]) else: raise NotReference # Find the target class target_cls = model.get_class(*args) if target_cls is None: # Try the parent tag name target_cls = class_for_tag(parent_tag) if cls_hint and (target_cls is None or issubclass(cls_hint, target_cls)): # Hinted class is more specific than target_cls, or failed to find a target # class above target_cls = cls_hint self.maintainable = issubclass(target_cls, model.MaintainableArtefact) if self.maintainable: # MaintainableArtefact is the same as the target cls, id = target_cls, target_id else: # Get the class for the parent MaintainableArtefact cls = model.parent_class(target_cls) # Store self.cls = cls self.agency = model.Agency(id=agency_id) if agency_id else _NO_AGENCY self.id = id self.version = version self.target_cls = target_cls self.target_id = target_id
return decorator def to_tags(*args): return chain(*[[qname(tag) for tag in arg.split()] for arg in args]) PARSE.update({k: None for k in product(to_tags(SKIP), ["start", "end"])}) class NotReference(Exception): pass _NO_AGENCY = model.Agency() class Reference: """Temporary class for references. - `cls`, `id`, `version`, and `agency_id` are always for a MaintainableArtefact. - If the reference target is a MaintainableArtefact (`maintainable` is True), `target_cls` and `target_id` are identical to `cls` and `id`, respectively. - If the target is not maintainable, `target_cls` and `target_id` describe it. `cls_hint` is an optional hint for when the object is instantiated, i.e. a more specific override for `cls`/`target_cls`. """ def __init__(self, elem, cls_hint=None):