Ejemplo n.º 1
0
    def __init__(self, parent=None):

        self.parent = parent

        Frame.__init__(self)

        self.main = self.master

        self.main.geometry('600x400+200+100')

        self.main.title('Table app')

        f = Frame(self.main)

        f.pack(fill=BOTH, expand=1)

        df = TableModel.getSampleData()

        self.table = pt = Table(f,
                                dataframe=df,
                                showtoolbar=True,
                                showstatusbar=True)

        pt.show()

        return
Ejemplo n.º 2
0
def smmm(u):
    #f.grid(row=15,column=0,sticky=W,ipadx=600,ipady=17)
 
    df = TableModel.getSampleData()
    pt = Table(leftFrame2,dataframe=u,showtoolbar=True, showstatusbar=True)
    pt.grid(row=15,column=0,sticky=W,ipadx=345,ipady=17)
    pt.show()
Ejemplo n.º 3
0
 def __init__(self, parent=None):
     window = Toplevel(chirag)
     f = Frame(window)
     f.pack(fill=BOTH,expand=1)
     df = TableModel.getSampleData()
     table = pt = Table(f, dataframe=df,showtoolbar=True, showstatusbar=True)
     pt.importCSV(chirag.filename)
     pt.show()
     return
Ejemplo n.º 4
0
 def __init__(self, passed_dataframe=TableModel.getSampleData(), parent=None):
     self.is_showing = True
     self.parent = parent
     tk.Frame.__init__(self)
     self.main = tk.Toplevel(parent)
     self.main.geometry('1000x400+200+100')
     self.main.title('My Trades Table')
     self.main.protocol('WM_DELETE_WINDOW', self.on_closing)
     f = tk.Frame(self.main)
     f.pack(fill=tk.BOTH, expand=1)
     df = passed_dataframe
     self.table = pt = Table(f, dataframe=df, showtoolbar=True, showstatusbar=True)
     pt.show()
     return
 def __init__(self, parent, controller):
     from tkinter import ttk
     tk.Frame.__init__(self, parent)
     s=str("Month: "+m+" and Weather Condition: "+c+".")
     from pandastable import Table, TableModel
     lbl=tk.Label(self, text=s, font=("Arial Bold", 18))
     lbl.grid(row=0, column=1)
     f = Frame(self)
     f.grid(row=2, column=0, columnspan=3)
     df = TableModel.getSampleData()
     print(type(df))
     self.table = pt = Table(f, dataframe=df1,
     showtoolbar=True, showstatusbar=True)
     pt.show()
     btn122=tk.Button(self, text="Back", command=lambda : controller.show_frame(pageone))
     btn122.grid(row=0, column=0)
     btn122=tk.Button(self, text='Go to Home', command=lambda : controller.show_frame(startpage))
     btn122.grid(row=3, column=1)
    
     label=tk.Label(self, text=txt)
     label.grid(row=1, column=0, columnspan=4)
Ejemplo n.º 6
0
 def test(self):
     path = 'test_batch'
     for i in range(20):
         df = TableModel.getSampleData()
         df.to_csv(os.path.join(path, 'test%s.csv' % str(i)))
     return
Ejemplo n.º 7
0
from tkinter import Tk, Frame
from pandastable import Table, TableModel

data = {
    'rec1': {
        'col1': 99.88,
        'col2': 108.79,
        'label': 'rec1'
    },
    'rec2': {
        'col1': 99.88,
        'col2': 108.79,
        'label': 'rec2'
    }
}

root = Tk()
f = Frame(root)
f.pack(fill="both", expand=1)
model = TableModel.getSampleData()
table = Table(f, dataframe=model, showtoolbar=True, showstatusbar=True)
table.show()
table.showPlotViewer(layout='horizontal')
#table.showPlot()

root.mainloop()
Ejemplo n.º 8
0
def run():
    print(dirname)
    mypath = (dirname)
    onlyfiles = [
        os.path.join(mypath, f) for f in os.listdir(mypath)
        if os.path.isfile(os.path.join(mypath, f))
    ]

    def pdfextract(file):
        text = extract_text(file)
        return text

    #function that does phrase matching and builds a candidate profile
    def create_profile(file):
        text = pdfextract(file)
        text = str(text)
        text = text.replace("\\n", "")
        text = text.lower()
        #below is the csv where we have all the keywords, you can customize your own
        keyword_dict = pd.read_csv(
            'https://raw.githubusercontent.com/darvinloganathan/resume-pharse/main/template.csv',
            error_bad_lines=False)
        stats_words = [
            nlp(text) for text in keyword_dict['Statistics'].dropna(axis=0)
        ]
        NLP_words = [nlp(text) for text in keyword_dict['NLP'].dropna(axis=0)]
        ML_words = [
            nlp(text)
            for text in keyword_dict['Machine Learning'].dropna(axis=0)
        ]
        DL_words = [
            nlp(text) for text in keyword_dict['Deep Learning'].dropna(axis=0)
        ]
        R_words = [
            nlp(text) for text in keyword_dict['R Language'].dropna(axis=0)
        ]
        python_words = [
            nlp(text)
            for text in keyword_dict['Python Language'].dropna(axis=0)
        ]
        Data_Engineering_words = [
            nlp(text)
            for text in keyword_dict['Data Engineering'].dropna(axis=0)
        ]

        matcher = PhraseMatcher(nlp.vocab)
        matcher.add('Statstics', None, *stats_words)
        matcher.add('NLP', None, *NLP_words)
        matcher.add('MachineLearnig', None, *ML_words)
        matcher.add('DeepLearning', None, *DL_words)
        matcher.add('R', None, *R_words)
        matcher.add('Python', None, *python_words)
        matcher.add('DataEngineering', None, *Data_Engineering_words)

        doc = nlp(text)

        d = []
        matches = matcher(doc)
        for match_id, start, end in matches:
            rule_id = nlp.vocab.strings[
                match_id]  # get the unicode ID, i.e. 'COLOR'
            span = doc[start:end]  # get the matched slice of the doc
            d.append((rule_id, span.text))
        keywords = "\n".join(f'{i[0]} {i[1]} ({j})'
                             for i, j in Counter(d).items())

        ## convertimg string of keywords to dataframe
        df = pd.read_csv(StringIO(keywords), names=['Keywords_List'])
        df1 = pd.DataFrame(df.Keywords_List.str.split(' ', 1).tolist(),
                           columns=['Subject', 'Keyword'])
        df2 = pd.DataFrame(df1.Keyword.str.split('(', 1).tolist(),
                           columns=['Keyword', 'Count'])
        df3 = pd.concat([df1['Subject'], df2['Keyword'], df2['Count']], axis=1)
        df3['Count'] = df3['Count'].apply(lambda x: x.rstrip(")"))

        base = os.path.basename(file)
        filename = os.path.splitext(base)[0]

        name = filename.split('_')
        name2 = name[0]
        name2 = name2.lower()
        ## converting str to dataframe
        name3 = pd.read_csv(StringIO(name2), names=['Candidate Name'])

        dataf = pd.concat([
            name3['Candidate Name'], df3['Subject'], df3['Keyword'],
            df3['Count']
        ],
                          axis=1)
        dataf['Candidate Name'].fillna(dataf['Candidate Name'].iloc[0],
                                       inplace=True)

        return (dataf)

    #function ends

    #code to execute/call the above functions

    final_database = pd.DataFrame()
    i = 0
    while i < len(onlyfiles):
        file = onlyfiles[i]
        dat = create_profile(file)
        final_database = final_database.append(dat)
        i += 1
        print(final_database)

    #code to count words under each category and visulaize it through Matplotlib

    final_database2 = final_database['Keyword'].groupby(
        [final_database['Candidate Name'],
         final_database['Subject']]).count().unstack()
    final_database2.reset_index(inplace=True)
    final_database2.fillna(0, inplace=True)
    new_data = final_database2.iloc[:, 1:]
    new_data.index = final_database2['Candidate Name']
    new_data['Score'] = new_data.sum(axis=1, skipna=True)
    result = new_data
    result.reset_index(level=0, inplace=True)
    #    base=list(result['Candidate Name'])
    #    result['resume'] = np.array(base)
    total_exp = []
    mail_id = []
    mob_num = []
    for i in onlyfiles:
        data = ResumeParser(i).get_extracted_data()
        a = data['total_experience']
        b = data['email']
        c = data['mobile_number']
        total_exp.append(a)
        mail_id.append(b)
        mob_num.append(c)
    te = []
    for i in total_exp:
        if i > 0:
            te.append(i)
        else:
            te.append('fresher')
    result.loc[:, 'total_experience'] = pd.Series(te)
    result.loc[:, 'email'] = pd.Series(mail_id)
    result.loc[:, 'mobile_number'] = pd.Series(mob_num)
    result1 = result.sort_values(by='Score', ascending=False)
    df = TableModel.getSampleData()
    table = pt = Table(Top,
                       dataframe=result1,
                       showtoolbar=True,
                       showstatusbar=True)
    pt.show()