Ejemplo n.º 1
0
def learningAddIndicateFunctionlfm(n, alpha, lamd):
    global fileNameAllPuiArray
    p, q = initTrainMatrix()
    puiArray = paper.load(fileNameAllPuiArray)
    #0-1
    puiArray = (puiArray - 44.034)/ 107.439
    import random
    for step in range(0, n):
        number = 0
        mae = 0
        userList = range(userNum)
        while len(userList) > 0:
            u = random.choice(userList)
            del userList[userList.index(u)]
            itemList= range(itemNum)
            while len(itemList) > 0:
                i = random.choice(itemList)
                del itemList[itemList.index(i)]
                if puiArray[u, i] != 111:
                    number += 1 #number 记录训练集中的评分总数
                    rui = puiArray[u, i]
                    pui = predict(u, i, p, q)
                    eui = rui - pui
                    mae += abs(eui)
                    #修正 p\q                 
                    temp = p[u,] + alpha * (q[i, ] * eui - lamd * p[u,])
                    q[i,] += alpha * (p[u,] * eui - lamd * q[i,])
                    p[u,] = temp  
                else:
                    p[u,] -= alpha * lamd * p[u,]
                    q[i,] -= alpha * lamd * q[i,]  
        nowMae = mae / number
        print 'step: %d      mae: %f' % ((step + 1), nowMae)
        alpha *= 0.9
    return p, q
Ejemplo n.º 2
0
def loadPQ(*fileName):
    import paper 
    p = paper.load(fileName[0]).A
    q = paper.load(fileName[1]).A
    return p, q
Ejemplo n.º 3
0
import sys
import copy
if __name__ == '__main__': 
    simCalMethod = paper.simMinkowskiDist
    sparseness = 'sparseness5'
    fileNumbers = 1
    K = 2
    MAE = 0.0
    RMSE = 0.0
    #参数调整 0.519026063656 1.64540380436
    #文件对象
    for i in range(1, fileNumbers+1):
        #文件对象
        trainFileName = 'dataSet/%s/training%d.txt' % (sparseness,i)
        testFileName = 'dataSet/%s/test%d.txt' % (sparseness,i)
        euiFileName = 'result/eui/euiNR-%s-test%d.txt' % (sparseness,i)
        pf = open(euiFileName, 'w')
        #load data
        testDict = paper.loadTestDataForDict(testFileName)
        trainArrayObj = paper.createArrayObj(trainFileName)
        mean = paper.calMean(trainArrayObj)
        wsAverageVector = paper.columnAverageArray(trainArrayObj, mean) 
         #相似度矩阵数据
        userSimFileName = 'result/simArraySlopeoneUser-%s-test%d.txt' % (sparseness,i)
#        userSimArrayObj = paper.createSimArray(trainArrayNorm, simCalMethod, 2.0)
#        paper.save(userSimArrayObj, userSimFileName)
        userSimArrayObj = paper.load(userSimFileName)
        #计算预测准确
        print calMaeAndRmse()
    pf.close()
    print 'ok'
Ejemplo n.º 4
0
def loadPQTp(sparseness=5, number=1):
    pFile = r'throught/p-%d-%d.txt' % (sparseness, number)
    qFile = r'throught/q-%d-%d.txt' % (sparseness, number)
    p = paper.load(pFile)
    q = paper.load(qFile)
    return p, q