Ejemplo n.º 1
0
import paradox as pd

A = pd.Constant([[1, 2], [1, 3]], name='A')
x = pd.Variable([0, 0], name='x')
b = pd.Constant([3, 4], name='b')

y = pd.reduce_sum((A @ x - b)**2) / 2

print('value =\n{}\n'.format(y.get_value()))  # 完善自动求值
print('x gradient =\n{}\n'.format(y.get_gradient(x)))  # 完善自动求导
Ejemplo n.º 2
0
c_y = c1_y + c2_y

# 定义符号。
A = pd.Variable([c_x, c_y], name='A')
W1 = pd.Variable(np.random.random((4, 2)), name='W1')  # 输入层到隐含层的权重矩阵。
W2 = pd.Variable(np.random.random((2, 4)), name='W2')  # 隐含层到输出层的权重矩阵。
B1 = pd.Variable(np.random.random((4, 1)), name='B1')  # 隐含层的偏置。
B2 = pd.Variable(np.random.random((2, 1)), name='B2')  # 输出层的偏置。
K = pd.Constant([[-1] * points_sum + [1] * points_sum,
                 [1] * points_sum + [-1] * points_sum])

# 构建2x4x2网络,使用ReLu激活函数。
model = pd.maximum(W2 @ pd.maximum(W1 @ A + B1, 0) + B2, 0)

# 使用SVM loss。
loss = pd.reduce_mean(pd.maximum(pd.reduce_sum(K * model, axis=0) + 1, 0))

# 创建loss计算引擎,申明变量为W1,W2,B1和B2。
loss_engine = pd.Engine(loss, [W1, W2, B1, B2])

# 创建梯度下降optimizer。
optimizer = pd.GradientDescentOptimizer(0.03)

# 迭代至多10000次最小化loss。
for epoch in range(10000):
    optimizer.minimize(loss_engine)
    if epoch % 100 == 0:  # 每100次epoch检查一次loss。
        loss_value = loss_engine.value()
        print('loss = {:.8f}'.format(loss_value))
        if loss_value < 0.001:  # loss阈值。
            break
Ejemplo n.º 3
0
import paradox as pd

A = pd.Constant([[1, 2], [1, 3]], name='A')
x = pd.Variable([0, 0], name='x')
B = pd.Constant([3, 4], name='b')

loss = pd.reduce_sum((A @ x - B)**2) / 2

e = pd.Engine(loss, x)
print('loss formula =\n{}\n'.format(loss))
print('loss =\n{}\n'.format(e.value()))

x_gradient = e.gradient(x)
print('x gradient formula =\n{}\n'.format(x_gradient))
print('x gradient =\n{}\n'.format(pd.Engine(x_gradient).value()))
Ejemplo n.º 4
0
loss_engine = pd.Engine(loss, [W1, W2, W3, B1, B2, B3])

# 创建梯度下降optimizer。
optimizer = pd.GradientDescentOptimizer(0.001)

# 迭代至多10000次最小化loss。
for epoch in range(10000):
    optimizer.minimize(loss_engine)
    if epoch % 100 == 0:  # 每100次epoch检查一次loss。
        loss_value = loss_engine.value()
        print('loss = {:.8f}'.format(loss_value))
        if loss_value < 0.001:  # loss阈值。
            break

# 创建预测函数。
predict = pd.where(pd.reduce_sum([[-1, 1]] * model, axis=1) < 0, -1, 1)

# 创建预测函数计算引擎。
predict_engine = pd.Engine(predict)

# 设置网格密度为0.1。
h = 0.1

# 生成预测采样点网格。
x, y = np.meshgrid(np.arange(np.min(c_x) - 1,
                             np.max(c_x) + 1, h),
                   np.arange(np.min(c_y) - 1,
                             np.max(c_y) + 1, h))

# 绑定变量值。
predict_engine.bind = {A: np.array([x.ravel(), y.ravel()]).transpose()}
Ejemplo n.º 5
0
    r = np.random.normal(4, 1)
    theta = np.random.normal(0, 2 * np.pi)
    c2_x.append(r * np.cos(theta))
    c2_y.append(r * np.sin(theta))
c_x = c1_x + c2_x
c_y = c1_y + c2_y

A = pd.Constant([c_x, c_y], name='A')
W1 = pd.Variable(np.random.random((4, 2)), name='W1')
W2 = pd.Variable(np.random.random((2, 4)), name='W2')
B1 = pd.Variable(np.random.random((4, 1)), name='B1')
B2 = pd.Variable(np.random.random((2, 1)), name='B2')
K = pd.Constant([[-1] * points_sum + [1] * points_sum, [1] * points_sum + [-1] * points_sum])

# 构建2x4x2网络,使用ReLu激活函数,SVM loss。
loss = pd.reduce_mean(pd.maximum(pd.reduce_sum(K * pd.maximum(W2 @ pd.maximum(W1 @ A + B1, 0) + B2, 0), axis=0) + 1, 0))


# 创建loss计算引擎,申明变量为W1,W2,B1和B2。
loss_engine = pd.Engine(loss, [W1, W2, B1, B2])

# 创建梯度下降optimizer。
optimizer = pd.GradientDescentOptimizer(0.0001)

# 迭代至多10000次最小化loss。
for epoch in range(10000):
    optimizer.minimize(loss_engine)
    if epoch % 100 == 0:  # 每100次epoch检查一次loss。
        loss_value = loss_engine.value()
        print('loss = {:.8f}'.format(loss_value))
        if loss_value < 0.001:  # loss阈值。