Ejemplo n.º 1
0
    def _initialize(self):
        """
        initialize with the necessary elements
        """
        self.tts_checkpoint_path = os.path.join(self.directory, "assets",
                                                "tts", "step-162000")
        self.waveflow_checkpoint_path = os.path.join(self.directory, "assets",
                                                     "vocoder", "step-2000000")
        self.waveflow_config_path = os.path.join(self.directory, "assets",
                                                 "vocoder",
                                                 "waveflow_ljspeech.yaml")

        tts_config_path = os.path.join(self.directory, "assets", "tts",
                                       "ljspeech.yaml")
        with open(tts_config_path) as f:
            self.tts_config = yaml.load(f, Loader=yaml.Loader)
        with fluid.dygraph.guard(fluid.CPUPlace()):
            self.tts_model = FastSpeechModel(
                self.tts_config['network'],
                num_mels=self.tts_config['audio']['num_mels'])
            io.load_parameters(model=self.tts_model,
                               checkpoint_path=self.tts_checkpoint_path)

            # Build vocoder.
            args = AttrDict()
            args.config = self.waveflow_config_path
            args.use_fp16 = False
            self.waveflow_config = io.add_yaml_config_to_args(args)
            self.waveflow = WaveFlowModule(self.waveflow_config)
            io.load_parameters(model=self.waveflow,
                               checkpoint_path=self.waveflow_checkpoint_path)
Ejemplo n.º 2
0
    def _initialize(self):
        """
        initialize with the necessary elements
        """
        self.tts_checkpoint_path = os.path.join(self.directory, "assets",
                                                "tts", "step-120000")
        self.waveflow_checkpoint_path = os.path.join(self.directory, "assets",
                                                     "vocoder", "step-2000000")
        self.waveflow_config_path = os.path.join(self.directory, "assets",
                                                 "vocoder",
                                                 "waveflow_ljspeech.yaml")

        tts_config_path = os.path.join(self.directory, "assets", "tts",
                                       "ljspeech.yaml")
        with open(tts_config_path) as f:
            self.tts_config = yaml.load(f, Loader=yaml.Loader)

        # The max length of audio when synthsis.
        self.max_len = 1000
        # The threshold of stop token which indicates the time step should stop generate spectrum or not.
        self.stop_threshold = 0.5

        with fluid.dygraph.guard(fluid.CPUPlace()):
            # Build TTS.
            with fluid.unique_name.guard():
                network_cfg = self.tts_config['network']
                self.tts_model = TransformerTTSModel(
                    network_cfg['embedding_size'], network_cfg['hidden_size'],
                    network_cfg['encoder_num_head'],
                    network_cfg['encoder_n_layers'],
                    self.tts_config['audio']['num_mels'],
                    network_cfg['outputs_per_step'],
                    network_cfg['decoder_num_head'],
                    network_cfg['decoder_n_layers'])
                io.load_parameters(model=self.tts_model,
                                   checkpoint_path=self.tts_checkpoint_path)

            # Build vocoder.
            args = AttrDict()
            args.config = self.waveflow_config_path
            args.use_fp16 = False
            self.waveflow_config = io.add_yaml_config_to_args(args)
            self.waveflow = WaveFlowModule(self.waveflow_config)
            io.load_parameters(model=self.waveflow,
                               checkpoint_path=self.waveflow_checkpoint_path)
Ejemplo n.º 3
0
def synthesis_with_waveflow(mel_output, args, checkpoint, place):

    fluid.enable_dygraph(place)
    args.config = args.config_vocoder
    args.use_fp16 = False
    config = io.add_yaml_config_to_args(args)

    mel_spectrogram = fluid.layers.transpose(mel_output, [0, 2, 1])

    # Build model.
    waveflow = WaveFlowModule(config)
    io.load_parameters(model=waveflow, checkpoint_path=checkpoint)
    for layer in waveflow.sublayers():
        if isinstance(layer, weight_norm.WeightNormWrapper):
            layer.remove_weight_norm()

    # Run model inference.
    wav = waveflow.synthesize(mel_spectrogram, sigma=config.sigma)
    return wav.numpy()[0]
Ejemplo n.º 4
0
            iteration += 1

            if iteration % config.test_every == 0:
                # Run validation step.
                model.valid_step(iteration)

            if rank == 0 and iteration % config.save_every == 0:
                # Save parameters.
                model.save(iteration)

    # Close TensorBoard.
    if rank == 0:
        vdl.close()


if __name__ == "__main__":
    # Create parser.
    parser = argparse.ArgumentParser(description="Train WaveFlow model")
    #formatter_class='default_argparse')
    add_options_to_parser(parser)
    utils.add_config_options_to_parser(parser)

    # Parse argument from both command line and yaml config file.
    # For conflicting updates to the same field,
    # the preceding update will be overwritten by the following one.
    config = parser.parse_args()
    config = io.add_yaml_config_to_args(config)
    # Force to use fp32 in model training
    vars(config)["use_fp16"] = False
    train(config)