Ejemplo n.º 1
0
def setupClassifier(path):
	l = p.getTrialList(path)
	for x in l:
		features = f.Features(x)
		data.append(features.feature)
		if x.head.target == 'good':
			label.append(1)
		else:
			label.append(0)
Ejemplo n.º 2
0
def getTrainingData(path):
	l = p.getTrialList(path)
	for x in l:
		features = f.Features(x)
		data.append(features.feature)
		if x.head.target == 'good' or path[-2] != 'k':
			label.append(1)
		else:
			label.append(0)
	 	print data[-1], label[-1]
Ejemplo n.º 3
0
def getTestingData(path):
	l = p.getTrialList(path)
	for x in l:
		features = f.Features(x, path[-2])
		data_test.append(features.feature)
		if x.head.target == 'good':
			label_test.append(1)
		else:
			label_test.append(0)
	 	print data_test[-1], label_test[-1]
Ejemplo n.º 4
0
def getTrainingData(path):
    l = p.getTrialList(path)
    for x in l:
        features = f.Features(x)
        data.append(features.feature)
        if x.head.target == 'good' or path[-2] != 'k':
            label.append(1)
        else:
            label.append(0)
        print data[-1], label[-1]
Ejemplo n.º 5
0
def setupClassifier(path):
    data = []
    label = []
    l = p.getTrialList(path)
    for x in l:
        features = f.Features(x, path[-2])
        data.append(features.feature)
        if x.head.target == 'good':
            label.append(1)
        else:
            label.append(0)
    return knn.knn(data, label)
Ejemplo n.º 6
0
def setupClassifier(path):
	data  = []
	label = []
	l = p.getTrialList(path)
	for x in l:
		features = f.Features(x,path[-2])
		data.append(features.feature)
		if x.head.target == 'good':
			label.append(1)
		else:
			label.append(0)
	return knn.knn(data, label)