import parser import Pyscandl from fetchers import fetcher_enum if __name__ == "__main__": args = parser.parse_arg() fetcher = fetcher_enum.Fetcher.get(args.fetcher).value pyscandl = Pyscandl.Pyscandl(fetcher, chapstart=args.chapter_start, output=args.output, keepimage=args.keep_images, all=args.all, link=args.link, manga=args.manga, download_number=args.download_number) pyscandl.full_download()
"question_weight": 1, "concepts_weight": 1, "narrative_weight": 1, "query_path": "../queries/query-train.xml", "cdn": 1, "ctc": 1, "cte": 1, "cts": 1, "unigram_weight": 1, "bigram_weight": 1, "rocchio_iters": 1, "use_cosine": False } if __name__ == '__main__': parser.parse_arg(configs) print("Rocchio Mode: ", configs["use_rocchio"]) fname_to_id, id_to_fname = parser.parse_file_list(configs) vocab_to_id, id_to_vocab = parser.parse_vocab_list(configs) doc_count = len(fname_to_id) inverted_files, gram_to_id, gram_count, id_to_doclen = parser.parse_inverted_file( configs, doc_count) configs["gram_count"] = gram_count configs["doc_count"] = doc_count # Save checkpoint for notebook avdl = sum(id_to_doclen.values()) / len(id_to_doclen) corpus = { "fname_to_id": fname_to_id, "id_to_doclen": id_to_doclen, "id_to_fname": id_to_fname, "vocab_to_id": vocab_to_id,
from train import TrainNet from parser import parse_arg, parse_shape class Predict(TrainNet): def valid(self): for i in range(self.data.len): y, x = self.data.get_for_test(i) x = x.reshape(x.shape[0], 1) pred = self.forward(x) if pred > 0.5: p = "B" else: p = "M" print("ID: ", self.data.ID[i], " Predict: ", pred[0, 0], " Class: ", p) if __name__ == "__main__": args = parse_arg() if not args.weight: print("Give me weights") exit(0) else: shape = parse_shape(args.weight) print("Shape: ", shape) net = Predict(shape, args.train) net.read(args.weight) net.valid()