Ejemplo n.º 1
0
def make_plot(in_filename, out_filename, time, title):
    ncf = scipy.io.netcdf.netcdf_file(in_filename, 'r')
    particles = partmc.aero_particle_array_t(ncf)
    env_state = partmc.env_state_t(ncf)
    ncf.close()

    age = abs(particles.least_create_times / 3600. - time)
    dry_diameters = particles.dry_diameters()
    s_crit = (particles.critical_rel_humids(env_state) - 1) * 100

    x_axis = partmc.log_grid(min=1e-8, max=1e-6, n_bin=140)
    y_axis = partmc.linear_grid(min=0, max=48, n_bin=96)

    vals2d = partmc.multival_2d(dry_diameters, age, s_crit, x_axis, y_axis)

    plt.clf()
    plt.pcolor(x_axis.edges(),
               y_axis.edges(),
               vals2d.transpose(),
               norm=matplotlib.colors.LogNorm(),
               linewidths=0.1)
    a = plt.gca()
    a.set_xscale("log")
    a.set_yscale("linear")
    plt.axis([x_axis.min, x_axis.max, y_axis.min, y_axis.max])
    plt.xlabel("dry diameter (m)")
    plt.ylabel("age (h)")
    cbar = plt.colorbar()
    cbar.set_label("S_crit (%)")
    plt.title(title)
    fig = plt.gcf()
    fig.savefig(out_filename)
Ejemplo n.º 2
0
def process_data(in_filename_list, out_filename):
    total_value = None
    for in_filename in in_filename_list:
        ncf = scipy.io.netcdf.netcdf_file(in_filename, 'r')
        particles = partmc.aero_particle_array_t(ncf)
        env_state = partmc.env_state_t(ncf)
        ncf.close()

        dry_diameters = particles.dry_diameters() * 1e6  # m to um
        masses = particles.masses() * 1e9  # kg to ug

        value = partmc.histogram_1d(dry_diameters,
                                    x_axis,
                                    weights=masses / particles.comp_vols)
        value /= 1e6  # m^{-3} to cm^{-3}

        if total_value is None:
            total_value = value
        else:
            total_value += value
    total_value /= len(in_filename_list)
    np.savetxt(out_filename, total_value)
    mask = np.ma.make_mask(total_value <= 0.0)
    masked_total_value = np.ma.array(total_value, mask=mask)
    return (masked_total_value.min(), masked_total_value.max())
Ejemplo n.º 3
0
def check_num(in_dir, in_filename, in_file_pattern, out_filename, counter):
    time_filename_list = partmc.get_time_filename_list(in_dir, in_file_pattern)

    id_p_array = np.array([16388, 10, 33311, 9212, 451, 11769])
    d = np.zeros((len(id_p_array),len(time_filename_list)))
    seconds = np.zeros(len(time_filename_list))
    i_count = 0

    for [time, filename, key] in time_filename_list:
	print time, filename, key
        ncf = scipy.io.netcdf.netcdf_file(filename, 'r')
        particles = partmc.aero_particle_array_t(ncf) 
        ncf.close()
        wet_diameters = particles.diameters()
        id_list = list(particles.ids)
        for i in range(0,6):
             i_index = id_list.index(id_p_array[i])
             
             d[i,i_count] = wet_diameters[i_index]
        seconds[i_count] = i_count
        i_count = i_count + 1

    plt.figure()
    plt.semilogy(seconds, d[0,:], 'b-', label = 'act1_2')
    plt.semilogy(seconds, d[1,:], 'g-', label = 'not_1_2')
    plt.semilogy(seconds, d[2,:], 'r-', label = 'act2_not_act1')
    plt.semilogy(seconds, d[3,:], 'b-', label = 'act1_2')
    plt.semilogy(seconds, d[4,:], 'g-', label = 'not_1_2')
    plt.semilogy(seconds, d[5,:], 'r-', label = 'act2_not_act1')
    plt.xlabel("time (s)")
    plt.ylabel("diameter (m)")
    plt.legend(loc = 'upper left')
    fig = plt.gcf()
    fig.savefig(out_filename)
Ejemplo n.º 4
0
def make_plot(in_filename,out_filename,title):
    ncf = scipy.io.netcdf.netcdf_file(in_filename, 'r')
    particles = partmc.aero_particle_array_t(ncf)
    ncf.close()

    bc = particles.masses(include = ["BC"])
    dry_mass = particles.masses(exclude = ["H2O"])
    bc_frac = bc / dry_mass

    dry_diameters = particles.dry_diameters()

    x_axis = partmc.log_grid(min=1e-8,max=1e-6,n_bin=70)
    y_axis = partmc.linear_grid(min=0,max=0.8,n_bin=40)

    hist2d = partmc.histogram_2d(dry_diameters, bc_frac, x_axis, y_axis, weights = 1/particles.comp_vols)
    plt.clf()
    plt.pcolor(x_axis.edges(), y_axis.edges(), hist2d.transpose(),norm = matplotlib.colors.LogNorm(), linewidths = 0.1)
    a = plt.gca()
    a.set_xscale("log")
    a.set_yscale("linear")
    plt.axis([x_axis.min, x_axis.max, y_axis.min, y_axis.max])
    plt.xlabel("dry diameter (m)")
    plt.ylabel("BC mass fraction")
    cbar = plt.colorbar()
    cbar.set_label("number density (m^{-3})")
    plt.title(title)
    fig = plt.gcf()
    fig.savefig(out_filename)
Ejemplo n.º 5
0
def get_plot_data_bc(filename, value_min=None, value_max=None):
    ncf = scipy.io.netcdf.netcdf_file(filename, 'r')
    particles = partmc.aero_particle_array_t(ncf)
    env_state = partmc.env_state_t(ncf)
    ncf.close()

    diameters = particles.dry_diameters() * 1e6
    comp_frac = particles.masses(include = ["BC"]) \
                / particles.masses(exclude = ["H2O"]) * 100
    # hack to avoid landing just around the integer boundaries
    comp_frac *= (1.0 + 1e-12)
    h2o = particles.masses(include=["H2O"])

    x_axis = partmc.log_grid(min=diameter_axis_min,
                             max=diameter_axis_max,
                             n_bin=num_diameter_bins * 2)
    y_axis = partmc.linear_grid(min=bc_axis_min,
                                max=bc_axis_max,
                                n_bin=num_bc_bins * 2)

    value = partmc.multival_2d(diameters, comp_frac, h2o, x_axis, y_axis)
    if value_max == None:
        value_max = value.max()
    if value_min == None:
        maxed_value = np.where(value > 0.0, value, value_max)
        value_min = maxed_value.min()
    #if value_max > 0.0:
    #    value = (log(value) - log(value_min)) \
    #            / (log(value_max) - log(value_min))
    #value = value.clip(0.0, 1.0)

    return (value, x_axis.edges(), y_axis.edges(), env_state, value_min,
            value_max)
Ejemplo n.º 6
0
def make_plot(in_filename,out_filename,time,title):
    ncf = scipy.io.netcdf.netcdf_file(in_filename, 'r')
    particles = partmc.aero_particle_array_t(ncf)
    ncf.close()

    age = abs(particles.least_create_times / 3600. - time)
    dry_diameters = particles.dry_diameters()

    x_axis = partmc.log_grid(min=1e-8,max=1e-6,n_bin=70)
    y_axis = partmc.linear_grid(min=0, max = 48, n_bin=49)

    hist2d = partmc.histogram_2d(dry_diameters, age, x_axis, y_axis, weights = 1/particles.comp_vols)

    plt.clf()
    plt.pcolor(x_axis.edges(), y_axis.edges(), hist2d.transpose(),norm = matplotlib.colors.LogNorm(), linewidths = 0.1)
    a = plt.gca()
    a.set_xscale("log")
    a.set_yscale("linear")
    plt.axis([x_axis.min, x_axis.max, y_axis.min, y_axis.max])
    plt.xlabel("dry diameter (m)")
    plt.ylabel("age (h)")
    cbar = plt.colorbar()
    cbar.set_label("number density (m^{-3})")
    plt.title(title)
    fig = plt.gcf()
    fig.savefig(out_filename)
Ejemplo n.º 7
0
def make_plot(netcdf_dir, netcdf_pattern, out_filename):
    time_filename_list = partmc.get_time_filename_list(netcdf_dir,
                                                       netcdf_pattern)
    ccn_array = np.zeros([len(time_filename_list), 4])
    i_counter = 0
    for [time, filename, key] in time_filename_list:
        print time, filename, key
        ncf = scipy.io.netcdf.netcdf_file(filename, 'r')
        particles = partmc.aero_particle_array_t(ncf)
        env_state = partmc.env_state_t(ncf)
        ncf.close()

        s_crit = (particles.critical_rel_humids(env_state) - 1) * 100

        activated_1 = (s_crit < config.s_crit_1)
        number_act_1 = sum(1 / particles.comp_vols[activated_1])

        activated_2 = (s_crit < config.s_crit_2)
        number_act_2 = sum(1 / particles.comp_vols[activated_2])

        activated_3 = (s_crit < config.s_crit_3)
        number_act_3 = sum(1 / particles.comp_vols[activated_3])

        ccn_array[i_counter, 0] = time
        ccn_array[i_counter, 1] = number_act_1
        ccn_array[i_counter, 2] = number_act_2
        ccn_array[i_counter, 3] = number_act_3
        i_counter += 1

    print ccn_array

    np.savetxt(out_filename, ccn_array)
Ejemplo n.º 8
0
def make_plot(in_filename,out_filename,title):
    print in_filename
    ncf = scipy.io.netcdf.netcdf_file(in_filename, 'r')
    particles = partmc.aero_particle_array_t(ncf)
    env_state = partmc.env_state_t(ncf)
    ncf.close()

    dry_diameters = particles.dry_diameters()
    s_crit = (particles.critical_rel_humids(env_state) - 1)*100
    x_axis = partmc.log_grid(min=1e-8,max=1e-6,n_bin=70)
    y_axis = partmc.log_grid(min=1e-3,max=1e2,n_bin=50)

    hist2d = partmc.histogram_2d(dry_diameters, s_crit, x_axis, y_axis, weights = 1/particles.comp_vols)
    plt.clf()
    plt.pcolor(x_axis.edges(), y_axis.edges(), hist2d.transpose(),norm = matplotlib.colors.LogNorm(), linewidths = 0.1)
    a = plt.gca()
    a.set_xscale("log")
    a.set_yscale("log")
    plt.axis([x_axis.min, x_axis.max, y_axis.min, y_axis.max])
    plt.xlabel("dry diameter (m)")
    plt.ylabel("critical supersaturation (%)")
    cbar = plt.colorbar()
    cbar.set_label("number density (m^{-3})")
    plt.title(title)
    fig = plt.gcf()
    fig.savefig(out_filename)
Ejemplo n.º 9
0
def process_data(in_filename_list, out_filename):
    total_value = None
    for in_filename in in_filename_list:
        ncf = scipy.io.netcdf.netcdf_file(in_filename, 'r')
        particles = partmc.aero_particle_array_t(ncf)
        env_state = partmc.env_state_t(ncf)
        ncf.close()

        dry_diameters = particles.dry_diameters() * 1e6 # m to um
        scrit = (particles.critical_rel_humids(env_state) - 1) * 100 # in %

        value = partmc.histogram_2d(dry_diameters, scrit, x_axis, y_axis,
                                    weights = 1 / particles.comp_vols,
                                    only_positive=False)
        # do not account for y_axis in % as it is a log-scale
        value /= 1e6 # m^{-3} to cm^{-3}

        if total_value is None:
            total_value = value
        else:
            total_value += value
    total_value /= len(in_filename_list)
    np.savetxt(out_filename, total_value)
    mask = np.ma.make_mask(total_value <= 0.0)
    masked_total_value = np.ma.array(total_value, mask=mask)
    return(masked_total_value.min(), masked_total_value.max())
Ejemplo n.º 10
0
def process_data(in_filename_list, out_filename):
    total_value = None
    for in_filename in in_filename_list:
        ncf = scipy.io.netcdf.netcdf_file(in_filename, 'r')
        particles = partmc.aero_particle_array_t(ncf)
        env_state = partmc.env_state_t(ncf)
        ncf.close()

        dry_diameters = particles.dry_diameters() * 1e6  # m to um
        comp_frac = particles.masses(include = ["BC"]) \
                    / particles.masses(exclude = ["H2O"]) * 100 # in %

        # hack to avoid landing just around the integer boundaries
        comp_frac *= (1.0 + 1e-12)

        value = partmc.histogram_2d(dry_diameters,
                                    comp_frac,
                                    x_axis,
                                    y_axis,
                                    weights=1 / particles.comp_vols,
                                    only_positive=False)
        value *= 100  # account for y_axis scaling in %
        value /= 1e6  # m^{-3} to cm^{-3}

        if total_value is None:
            total_value = value
        else:
            total_value += value
    total_value /= len(in_filename_list)
    np.savetxt(out_filename, total_value)
    mask = np.ma.make_mask(total_value <= 0.0)
    masked_total_value = np.ma.array(total_value, mask=mask)
    return (masked_total_value.min(), masked_total_value.max())
Ejemplo n.º 11
0
def make_plot(in_filename,out_filename,title):
    ncf = scipy.io.netcdf.netcdf_file(in_filename, 'r')
    particles = partmc.aero_particle_array_t(ncf)
    ncf.close()

    oin = particles.masses(include = ["BC"])
    dry_mass = particles.masses(exclude = ["H2O"])
    oin_frac = oin / dry_mass

    dry_diameters = particles.dry_diameters()

    print oin.max()

    x_axis = partmc.log_grid(min=1e-8,max=1e-4,n_bin=100)
    y_axis = partmc.log_grid(min=1e-19,max=6e-15,n_bin=30)

    hist2d = partmc.histogram_2d(dry_diameters, oin, x_axis, y_axis, weights = 1/particles.comp_vols)
    plt.clf()
    plt.pcolor(x_axis.edges(), y_axis.edges(), hist2d.transpose(),norm = matplotlib.colors.LogNorm(), linewidths = 0.1)
    a = plt.gca()
    a.set_xscale("log")
    a.set_yscale("log")
    plt.axis([1e-8, 1e-4, 1e-19, 6e-15])
    plt.xlabel("dry diameter (m)")
    plt.ylabel("BC mass")
    plt.grid(True)
#    plt.clim(1e6, 1e12)
    cbar = plt.colorbar()
    cbar.set_label(r"number density ($\rm m^{-3}$)")
    plt.title(title)
    fig = plt.gcf()
    fig.savefig(out_filename)
Ejemplo n.º 12
0
def make_plot(in_dir, in_files, title, out_filename, error):
    x_axis = partmc.log_grid(min=1e-8, max=1e-5, n_bin=3)
    x_centers = x_axis.centers()
    counter = 0
    hist_array = np.zeros([len(x_centers), config.i_loop_max])
    error = np.zeros([3])
    for file in in_files:
        ncf = scipy.io.netcdf.netcdf_file(in_dir + file, 'r')
        particles = partmc.aero_particle_array_t(ncf)
        ncf.close()

        dry_diameters = particles.dry_diameters()
        hist = partmc.histogram_1d(dry_diameters,
                                   x_axis,
                                   weights=1 / particles.comp_vols)
        hist_array[:, counter] = hist
        counter = counter + 1
    plt.clf()
    for i_loop in range(0, config.i_loop_max):
        plt.loglog(x_axis.centers(), hist_array[:, i_loop], 'k')
        plt.errorbar(x_axis.centers(), np.average(hist_array, axis=1),
                     np.std(hist_array, axis=1))
        avg = np.average(hist_array, axis=1)
        std = np.std(hist_array, axis=1)
        error = std / avg
        print 'avg and std ', avg, std, error
    plt.axis([1e-8, 1e-5, 1e4, 1e11])
    plt.xlabel("dry diameter (m)")
    plt.ylabel("number density (m^{-3})")
    plt.title(title)
    fig = plt.gcf()
    fig.savefig(out_filename)
Ejemplo n.º 13
0
def make_plot(in_dir, in_filename1, in_filename2, in_filename3, out_filename,
              title, ccn_cn_i, ccn_cn_j):
    print in_filename1, in_filename2, in_filename3
    ncf = scipy.io.netcdf.netcdf_file(in_dir + in_filename1, 'r')
    particles1 = partmc.aero_particle_array_t(ncf)
    ncf.close()
    ncf = scipy.io.netcdf.netcdf_file(in_dir + in_filename2, 'r')
    particles2 = partmc.aero_particle_array_t(ncf)
    ncf.close()
    ncf = scipy.io.netcdf.netcdf_file(in_dir + in_filename3, 'r')
    particles3 = partmc.aero_particle_array_t(ncf)
    ncf.close()

    x_axis = partmc.log_grid(min=1e-10, max=1e-4, n_bin=30)
    x_centers = x_axis.centers()

    wet_diameters1 = particles1.diameters()
    wet_diameters2 = particles2.diameters()
    wet_diameters3 = particles3.diameters()

    hist1 = partmc.histogram_1d(wet_diameters1,
                                x_axis,
                                weights=1 / particles1.comp_vols)
    hist2 = partmc.histogram_1d(wet_diameters2,
                                x_axis,
                                weights=1 / particles2.comp_vols)
    hist3 = partmc.histogram_1d(wet_diameters3,
                                x_axis,
                                weights=1 / particles3.comp_vols)

    is_activated = (wet_diameters3 > 2e-6)
    sum_tot = sum(1 / particles3.comp_vols) * 1e-6
    num_act = sum(1 / particles3.comp_vols[is_activated]) * 1e-6
    print title, num_act, sum_tot, num_act / sum_tot * 100

    ccn_cn_ratio[ccn_cn_i, ccn_cn_j] = num_act / sum_tot

    plt.clf()
    plt.semilogx(x_axis.centers(), hist1, label='0 min')
    plt.semilogx(x_axis.centers(), hist2, label='2 mins')
    plt.semilogx(x_axis.centers(), hist3, label='10 mins')
    plt.legend(loc='upper left')
    plt.xlabel("wet diameter (m)")
    plt.ylabel("number density (m^{-3})")
    plt.title(title)
    fig = plt.gcf()
    fig.savefig(out_filename)
Ejemplo n.º 14
0
def make_plot(dir_name, in_filename, out_filename):
    ncf = scipy.io.netcdf.netcdf_file(dir_name + in_filename, 'r')
    particles = partmc.aero_particle_array_t(ncf)
    ncf.close()

    bc = particles.masses(include=["BC"])
    dry_mass = particles.masses(exclude=["H2O"])
    bc_frac = bc / dry_mass

    dry_diameters = particles.dry_diameters() * 1e6

    x_axis = partmc.log_grid(min=1e-3, max=1e1, n_bin=100)
    y_axis = partmc.linear_grid(min=0, max=0.8, n_bin=40)

    hist2d = partmc.histogram_2d(dry_diameters,
                                 bc_frac,
                                 x_axis,
                                 y_axis,
                                 weights=1 / particles.comp_vols)

    hist2d = hist2d * 1e-6
    print hist2d[36, :]
    (figure, axes_array,
     cbar_axes_array) = mpl_helper.make_fig_array(1,
                                                  1,
                                                  figure_width=5,
                                                  top_margin=0.5,
                                                  bottom_margin=0.45,
                                                  left_margin=0.65,
                                                  right_margin=1,
                                                  vert_sep=0.3,
                                                  horiz_sep=0.3,
                                                  colorbar="shared",
                                                  colorbar_location="right")

    axes = axes_array[0][0]
    cbar_axes = cbar_axes_array[0]
    p = axes.pcolor(x_axis.edges(),
                    y_axis.edges(),
                    hist2d.transpose(),
                    norm=matplotlib.colors.LogNorm(vmin=1e3, vmax=1e5),
                    linewidths=0.1)
    axes.set_xscale("log")
    axes.set_yscale("linear")
    axes.set_ylabel(r"BC mass fraction $w_{\rm BC}$")
    axes.set_xlabel(r"dry diameter $D$/ $\rm \mu m$")
    axes.set_ylim(0, 0.8)
    axes.set_xlim(5e-3, 1e0)
    axes.grid(True)
    cbar = figure.colorbar(p,
                           cax=cbar_axes,
                           format=matplotlib.ticker.LogFormatterMathtext(),
                           orientation='vertical')
    cbar_axes.xaxis.set_label_position('top')
    cbar.set_label(r"number conc. $n(D,w_{\rm BC})$ / $\rm cm^{-3}$")

    mpl_helper.remove_fig_array_axes(axes_array)
    figure.savefig(out_filename)
Ejemplo n.º 15
0
def make_plot(in_dir, in_filename_wc, in_filename_nc, title, out_filename_wc,
              out_filename_nc):
    print 'file ', in_dir + in_filename_wc

    ncf = scipy.io.netcdf.netcdf_file(in_dir + in_filename_wc, 'r')
    particles_wc = partmc.aero_particle_array_t(ncf)
    ncf.close()

    ncf = scipy.io.netcdf.netcdf_file(in_dir + in_filename_nc, 'r')
    particles_nc = partmc.aero_particle_array_t(ncf)
    ncf.close()

    #    so4_wc =  particles_wc.masses(include = ["SO4"])/particles_wc.aero_data.molec_weights[0]
    #    nh4_wc =  particles_wc.masses(include = ["NH4"])/particles_wc.aero_data.molec_weights[3]
    #    no3_wc =  particles_wc.masses(include = ["NO3"])/particles_wc.aero_data.molec_weights[1]

    so4_nc = particles_nc.masses(
        include=["SO4"]) / particles_nc.aero_data.molec_weights[0]
    nh4_nc = particles_nc.masses(
        include=["NH4"]) / particles_nc.aero_data.molec_weights[3]
    no3_nc = particles_nc.masses(
        include=["NO3"]) / particles_nc.aero_data.molec_weights[1]

    #    plt.scatter(nh4_wc, 2*so4_wc+no3_wc)

    #    a = plt.gca() # gets the axis
    #    a.set_xscale("log") # x axis log
    #    a.set_yscale("log") # y axis log
    #    plt.axis([1e-25, 1e-15, 1e-25, 1e-15]) # axis limit

    #    plt.title(title)
    #    fig = plt.gcf()
    #    fig.savefig(out_filename_wc)

    plt.scatter(nh4_nc, 2 * so4_nc + no3_nc)

    a = plt.gca()  # gets the axis
    a.set_xscale("log")  # x axis log
    a.set_yscale("log")  # y axis log
    plt.axis([1e-25, 1e-15, 1e-25, 1e-15])  # axis limit

    plt.title(title)
    fig = plt.gcf()
    fig.savefig(out_filename_nc)
Ejemplo n.º 16
0
def make_plot(in_dir, in_filename1, in_filename2, in_filename3, out_filename):
    print in_filename1, in_filename2, in_filename3
    ncf = scipy.io.netcdf.netcdf_file(in_dir + in_filename1, 'r')
    particles1 = partmc.aero_particle_array_t(ncf)
    ncf.close()
    ncf = scipy.io.netcdf.netcdf_file(in_dir + in_filename2, 'r')
    particles2 = partmc.aero_particle_array_t(ncf)
    ncf.close()
    ncf = scipy.io.netcdf.netcdf_file(in_dir + in_filename3, 'r')
    particles3 = partmc.aero_particle_array_t(ncf)
    ncf.close()

    x_axis = partmc.log_grid(min=1e-10, max=1e-4, n_bin=50)
    x_centers = x_axis.centers()

    dry_diameters1 = particles1.dry_diameters()
    dry_diameters2 = particles2.dry_diameters()
    dry_diameters3 = particles3.dry_diameters()

    hist1 = partmc.histogram_1d(dry_diameters1,
                                x_axis,
                                weights=particles1.masses(exclude=["H2O"]) /
                                particles1.comp_vols)
    hist2 = partmc.histogram_1d(dry_diameters2,
                                x_axis,
                                weights=particles2.masses(exclude=["H2O"]) /
                                particles2.comp_vols)
    hist3 = partmc.histogram_1d(dry_diameters3,
                                x_axis,
                                weights=particles3.masses(exclude=["H2O"]) /
                                particles3.comp_vols)

    plt.clf()
    plt.loglog(x_axis.centers(), hist1, label='initial')
    plt.loglog(x_axis.centers(), hist2, label='6 hours')
    plt.loglog(x_axis.centers(), hist3, label='12 hours')
    plt.legend(loc='center right')
    plt.axis([5e-9, 1e-4, 1e-14, 1e-7])
    plt.grid(True)
    plt.xlabel("dry diameter (m)")
    plt.ylabel(r"mass concentration ($\rm kg \, m^{-3}$)")
    fig = plt.gcf()
    fig.savefig(out_filename)
Ejemplo n.º 17
0
def make_plot(in_filename, out_filename, title):
    ncf = scipy.io.netcdf.netcdf_file(in_filename, 'r')
    particles = partmc.aero_particle_array_t(ncf)
    ncf.close()

    so4 = particles.masses(
        include=["SO4"]) / particles.aero_data.molec_weights[0]
    nh4 = particles.masses(
        include=["NH4"]) / particles.aero_data.molec_weights[3]
    no3 = particles.masses(
        include=["NO3"]) / particles.aero_data.molec_weights[1]

    dry_mass = particles.masses(exclude=["H2O"])
    so4_frac = so4 / dry_mass
    ion_ratio = (2 * so4 + no3) / nh4

    is_neutral = (ion_ratio < 2)
    print 'neutral ', sum(is_neutral), ion_ratio[is_neutral]

    dry_diameters = particles.dry_diameters()

    x_axis = partmc.log_grid(min=1e-8, max=1e-6, n_bin=70)
    y_axis = partmc.linear_grid(min=0, max=1.0, n_bin=50)

    hist2d = partmc.histogram_2d(dry_diameters,
                                 so4_frac,
                                 x_axis,
                                 y_axis,
                                 weights=1 / particles.comp_vols)

    plt.clf()
    plt.semilogx(dry_diameters, ion_ratio, 'rx')
    fig = plt.gcf()
    fig.savefig('figs/t.pdf')

    plt.clf()
    plt.pcolor(x_axis.edges(),
               y_axis.edges(),
               hist2d.transpose(),
               norm=matplotlib.colors.LogNorm(),
               linewidths=0.1)
    a = plt.gca()
    a.set_xscale("log")
    a.set_yscale("linear")
    plt.axis([x_axis.min, x_axis.max, y_axis.min, y_axis.max])
    plt.xlabel("dry diameter (m)")
    plt.ylabel("SO4 mass fraction")
    cbar = plt.colorbar()
    cbar.set_label("number density (m^{-3})")
    plt.title(title)
    fig = plt.gcf()
    fig.savefig(out_filename)
Ejemplo n.º 18
0
def make_plot(in_files, f1, f2, f3, f4, f5, f6):
    x_axis = partmc.log_grid(min=1e-10,max=1e-4,n_bin=100)
    y_axis = partmc.linear_grid(min=0,max=1.,n_bin=50)
    x_centers = x_axis.centers()
    y_centers = y_axis.centers()
    counter = 0
    hist_array_num = np.zeros([len(x_centers),len(y_centers),config.i_loop_max])
    hist_average_num = np.zeros([len(x_centers), len(y_centers)])
    hist_std_num = np.zeros([len(x_centers), len(y_centers)])
    hist_std_norm_num = np.zeros([len(x_centers), len(y_centers)])

    hist_array_mass = np.zeros([len(x_centers),len(y_centers),config.i_loop_max])
    hist_average_num = np.zeros([len(x_centers), len(y_centers)])
    hist_std_num = np.zeros([len(x_centers), len(y_centers)])
    hist_std_norm_num = np.zeros([len(x_centers), len(y_centers)])
    for file in in_files:
        ncf = scipy.io.netcdf.netcdf_file(config.netcdf_dir+'/'+file, 'r')
        particles = partmc.aero_particle_array_t(ncf)
        ncf.close()

        bc = particles.masses(include = ["BC"])
        dry_mass = particles.masses(exclude = ["H2O"])
        bc_frac = bc / dry_mass

        dry_diameters = particles.dry_diameters()
        hist2d = partmc.histogram_2d(dry_diameters, bc_frac, x_axis, y_axis, weights = 1 / particles.comp_vols)
        hist_array_num[:,:,counter] = hist2d
        hist2d = partmc.histogram_2d(dry_diameters, bc_frac, x_axis, y_axis, weights = particles.masses(include=["BC"])  / particles.comp_vols)
        hist_array_mass[:,:,counter] = hist2d

        counter = counter+1

    hist_average_num = np.average(hist_array_num, axis = 2)
    hist_std_num = np.std(hist_array_num, axis = 2)
    hist_std_norm_num = hist_std_num / hist_average_num
    hist_std_norm_num = np.ma.masked_invalid(hist_std_norm_num)

    hist_average_mass = np.average(hist_array_mass, axis = 2)
    hist_std_mass = np.std(hist_array_mass, axis = 2)
    hist_std_norm_mass = hist_std_mass / hist_average_mass
    hist_std_norm_mass = np.ma.masked_invalid(hist_std_norm_mass)

    np.savetxt(f1, x_axis.edges())
    np.savetxt(f2, y_axis.edges())
    np.savetxt(f3, hist_average_num)
    np.savetxt(f4, hist_std_norm_num)
    np.savetxt(f5, hist_average_mass)
    np.savetxt(f6, hist_std_norm_mass)
Ejemplo n.º 19
0
def make_plot(in_filename,out_filename):
    ncf = scipy.io.netcdf.netcdf_file(in_filename, 'r')
    particles = partmc.aero_particle_array_t(ncf)
    env_state = partmc.env_state_t(ncf)
    ncf.close()

    bc = particles.masses(include = ["BC"])
    dry_mass = particles.masses(exclude = ["H2O"])
    bc_frac = bc / dry_mass

    so4 = particles.masses(include = ["SO4"])
    inorg = particles.masses(include = ["SO4", "NO3", "NH4"])
    inorg_frac = inorg / dry_mass 

    kappas = particles.kappas()
 
    wet_diameters = particles.diameters()
    dry_diameters = particles.dry_diameters() * 1e6

    x_axis = partmc.log_grid(min=1e-2,max=1e0,n_bin=90)
    y_axis = partmc.linear_grid(min=0,max=0.8,n_bin=40)

    vals = partmc.multival_2d(dry_diameters, bc_frac, kappas, x_axis, y_axis, rand_arrange=False)

    vals_pos = np.ma.masked_less_equal(vals, 0)
    vals_zero = np.ma.masked_not_equal(vals, 0)
    
    plt.clf()
    if vals_zero.count() > 0:
       plt.pcolor(x_axis.edges(), y_axis.edges(), vals_zero.transpose(), cmap=matplotlib.cm.gray, linewidths = 0.1)
    
    if vals_pos.count() > 0:
       plt.pcolor(x_axis.edges(), y_axis.edges(), vals_pos.transpose(), linewidths = 0.1)

    title = partmc.time_of_day_string(env_state)
    a = plt.gca()
    a.set_xscale("log")
    a.set_yscale("linear")
    plt.axis([x_axis.min, x_axis.max, y_axis.min, y_axis.max])
    plt.xlabel("dry diameter (\mu m)")
    plt.ylabel("BC dry mass fraction")
    cbar = plt.colorbar()
    plt.clim(0, 0.6)
    cbar.set_label("kappa")
    plt.title(title)
    fig = plt.gcf()
    fig.savefig(out_filename)
Ejemplo n.º 20
0
def get_plot_data_bc(filename, value_min=None, value_max=None):
    ncf = scipy.io.netcdf.netcdf_file(filename, 'r')
    particles = partmc.aero_particle_array_t(ncf)
    env_state = partmc.env_state_t(ncf)
    ncf.close()

    diameters = particles.dry_diameters() * 1e6

    x_axis = partmc.log_grid(min=diameter_axis_min,
                             max=diameter_axis_max,
                             n_bin=num_diameter_bins)

    value = partmc.histogram_1d(diameters,
                                x_axis,
                                weights=1 / particles.comp_vols)
    value /= 1e6

    return (value, x_axis.centers())
Ejemplo n.º 21
0
def make_plot(dir_name,in_filename,out_filename):
    ncf = scipy.io.netcdf.netcdf_file(dir_name+in_filename, 'r')
    
    particles = partmc.aero_particle_array_t(ncf)
    env_state = partmc.env_state_t(ncf)
    ncf.close()

    dry_diameters = particles.dry_diameters() * 1e6

    s_crit = (particles.critical_rel_humids(env_state) - 1)*100
    
    x_axis = partmc.log_grid(min=1e-3,max=1e1,n_bin=100)
    y_axis = partmc.log_grid(min=1e-3,max=1e2,n_bin=50)

    hist2d = partmc.histogram_2d(dry_diameters, s_crit, x_axis, y_axis, weights = particles.num_concs)

    hist2d = hist2d * 1e-6

    (figure, axes_array, cbar_axes_array) = mpl_helper.make_fig_array(1,1, figure_width=5,
									  top_margin=0.5, bottom_margin=0.45,
									  left_margin=0.65, right_margin=1,
									  vert_sep=0.3, horiz_sep=0.3,
									  colorbar="shared", colorbar_location="right")

    axes = axes_array[0][0]
    cbar_axes = cbar_axes_array[0]
    p = axes.pcolor(x_axis.edges(), y_axis.edges(), hist2d.transpose(), 
		    norm = matplotlib.colors.LogNorm(vmin=1e3, vmax=1e5), linewidths = 0.1)
    axes.set_xscale("log")
    axes.set_yscale("log")
    axes.set_ylabel(r"crit. supersat. $S_{\rm c}$")
    axes.set_xlabel(r"dry diameter $D$/ $\rm \mu m$")
    axes.set_ylim(1e-3,10)
    axes.set_xlim(5e-3, 1e0)
    axes.grid(True)
    cbar = figure.colorbar(p, cax=cbar_axes, format=matplotlib.ticker.LogFormatterMathtext(),
			   orientation='vertical')
    cbar_axes.xaxis.set_label_position('top')
    cbar.set_label(r"number conc. $n(D,S_{\rm c})$ / $\rm cm^{-3}$")
    
    mpl_helper.remove_fig_array_axes(axes_array)
    figure.savefig(out_filename)
    plt.close()
Ejemplo n.º 22
0
def make_plot(in_files, f1, f2, f3, f4, f5):
    x_axis = partmc.log_grid(min=1e-10, max=1e-4, n_bin=100)
    x_centers = x_axis.centers()
    counter = 0
    hist_array_num = np.zeros([len(x_centers), config.i_loop_max])
    hist_array_mass = np.zeros([len(x_centers), config.i_loop_max])
    for file in in_files:
        ncf = scipy.io.netcdf.netcdf_file(config.netcdf_dir + '/' + file, 'r')
        particles = partmc.aero_particle_array_t(ncf)
        ncf.close()

        dry_diameters = particles.dry_diameters()
        hist = partmc.histogram_1d(dry_diameters,
                                   x_axis,
                                   weights=1 / particles.comp_vols)
        hist_array_num[:, counter] = hist
        hist = partmc.histogram_1d(dry_diameters,
                                   x_axis,
                                   weights=particles.masses(exclude=["H2O"]) /
                                   particles.comp_vols)
        hist_array_mass[:, counter] = hist

        counter = counter + 1

    hist_array_gav_num = np.exp(np.average(np.log(hist_array_num), axis=1))
    hist_array_gstd_num = np.exp(np.std(np.log(hist_array_num), axis=1))
    e_bar_top_num = hist_array_gav_num * hist_array_gstd_num
    e_bar_bottom_num = hist_array_gav_num / hist_array_gstd_num
    e_bars_num = np.vstack((hist_array_gav_num - e_bar_bottom_num,
                            e_bar_top_num - hist_array_gav_num))

    hist_array_gav_mass = np.exp(np.average(np.log(hist_array_mass), axis=1))
    hist_array_gstd_mass = np.exp(np.std(np.log(hist_array_mass), axis=1))
    e_bar_top_mass = hist_array_gav_mass * hist_array_gstd_mass
    e_bar_bottom_mass = hist_array_gav_mass / hist_array_gstd_mass
    e_bars_mass = np.vstack((hist_array_gav_mass - e_bar_bottom_mass,
                             e_bar_top_mass - hist_array_gav_mass))

    np.savetxt(f1, x_axis.centers())
    np.savetxt(f2, hist_array_gav_num)
    np.savetxt(f3, e_bars_num)
    np.savetxt(f4, hist_array_gav_mass)
    np.savetxt(f5, e_bars_mass)
Ejemplo n.º 23
0
def process_data(in_filename_list):
    total_value = None
    for in_filename in in_filename_list:
        ncf = scipy.io.netcdf.netcdf_file(in_filename, 'r')
        particles = partmc.aero_particle_array_t(ncf)
        env_state = partmc.env_state_t(ncf)
        ncf.close()

        time_since_midnight = env_state.start_time_of_day \
            + env_state.elapsed_time

        value = (1 / particles.comp_vols).sum()
        value /= 1e6  # m^{-3} to cm^{-3}

        if total_value is None:
            total_value = value
        else:
            total_value += value
    total_value /= len(in_filename_list)
    return [time_since_midnight, total_value]
Ejemplo n.º 24
0
def process_data(in_filename_list):
    total_value = None
    for in_filename in in_filename_list:
        ncf = scipy.io.netcdf.netcdf_file(in_filename, 'r')
        particles = partmc.aero_particle_array_t(ncf)
        env_state = partmc.env_state_t(ncf)
        ncf.close()

        time_since_midnight = env_state.start_time_of_day \
            + env_state.elapsed_time

        value = (particles.raw_masses / particles.comp_vols).sum(1)
        value *= 1e3  # kg m^{-3} to mg cm^{-3}

        if total_value is None:
            total_value = value
        else:
            total_value += value
    total_value /= len(in_filename_list)
    return np.concatenate((np.array([time_since_midnight]), total_value))
Ejemplo n.º 25
0
def make_plot(in_dir, in_filename, title, out_filename):
    print 'file ', in_dir+in_filename
    
    ncf = scipy.io.netcdf.netcdf_file(in_dir+in_filename, 'r')
    particles= partmc.aero_particle_array_t(ncf)
    ncf.close()
    
    bc =  particles.masses(include = ["BC"])/particles.aero_data.molec_weights[0]
    oc =  particles.masses(include = ["OC"])/particles.aero_data.molec_weights[3] 
    no3 =  particles.masses(include = ["NO3"])/particles.aero_data.molec_weights[1]  

    plt.scatter(bc,oc)
    
    a = plt.gca() # gets the axis
    a.set_xscale("log") # x axis log
    a.set_yscale("log") # y axis log
    plt.axis([1e-20, 1e-15, 1e-20, 1e-15]) # axis limit

    plt.title(title)
    fig = plt.gcf()
    fig.savefig(out_filename)
Ejemplo n.º 26
0
def make_plot(in_dir, in_files, title, out_filename):
    x_axis = partmc.log_grid(min=1e-10,max=1e-4,n_bin=100)
    x_centers = x_axis.centers()
    counter = 0
    hist_array = np.zeros([len(x_centers),config.i_loop_max])
    for file in in_files:
        ncf = scipy.io.netcdf.netcdf_file(in_dir+file, 'r')
        particles = partmc.aero_particle_array_t(ncf)
        ncf.close() 

        dry_diameters = particles.dry_diameters()
        hist = partmc.histogram_1d(dry_diameters, x_axis, weights = 1 / particles.comp_vols)
        hist_array[:,counter] = hist
        counter = counter+1
#    hist_array_av = np.average(hist_array,axis = 1)
#    hist_array_std = np.std(hist_array, axis = 1)
#    hist_array_std_clipped = np.minimum(hist_array_std, hist_array_av - 1)
#    e_bars = np.vstack((hist_array_std_clipped, hist_array_std))

    hist_array_gav = np.exp(np.average(np.log(hist_array),axis = 1))
    hist_array_gstd = np.exp(np.std(np.log(hist_array), axis = 1))
    e_bar_top = hist_array_gav * hist_array_gstd 
    e_bar_bottom = hist_array_gav / hist_array_gstd
    e_bars = np.vstack((hist_array_gav - e_bar_bottom, e_bar_top - hist_array_gav))


    plt.clf()
#    for i_loop in range(0,config.i_loop_max):
#        plt.loglog(x_axis.centers(), hist_array[:,i_loop], 'k')
    a = plt.gca() # gets the axis
    a.set_xscale("log") # x axis log
    a.set_yscale("log") # y axis log
    plt.errorbar(x_axis.centers(), hist_array_gav, e_bars)
    plt.axis([5e-9, 5e-6, 1e4, 1e11])
    plt.xlabel("dry diameter (m)")
    plt.ylabel("number density (m^{-3})")
#    plt.title(title)
    plt.grid(True)
    fig = plt.gcf()
    fig.savefig(out_filename)
Ejemplo n.º 27
0
def make_plot(in_dir, in_filename, out_filename, out_data_name):
    print in_filename
    ncf = scipy.io.netcdf.netcdf_file(in_dir+in_filename, 'r')
    particles = partmc.aero_particle_array_t(ncf)
    ncf.close()

    x_axis = partmc.log_grid(min=1e-9,max=1e-5,n_bin=100)
    x_centers = x_axis.centers() 

    diameters = particles.diameters()

    pure_bc = ((particles.masses(include = ["BC"]) > 0) & (particles.masses(include = ["SO4"]) == 0))
    pure_so4 =  ((particles.masses(include = ["SO4"]) > 0) & (particles.masses(include = ["BC"]) == 0))
    with_bc = (particles.masses(include = ["BC"]) > 0)
    with_so4 = (particles.masses(include = ["SO4"]) > 0)
    mixed_bc_so4 = ((particles.masses(include = ["SO4"]) > 0) &  (particles.masses(include = ["BC"]) > 0))

    hist = partmc.histogram_1d(diameters, x_axis, weights = 1 / particles.comp_vols) / 1e6
    hist_bc = partmc.histogram_1d(diameters[pure_bc], x_axis, weights = 1 / particles.comp_vols[pure_bc]) /1e6
    hist_so4 = partmc.histogram_1d(diameters[pure_so4], x_axis, weights = 1 / particles.comp_vols[pure_so4]) /1e6
    hist_mixed = partmc.histogram_1d(diameters[mixed_bc_so4], x_axis, weights = 1 / particles.comp_vols[mixed_bc_so4]) / 1e6

    plt.clf()
    plt.loglog(x_centers*1e6, hist,  'r-', label = 'total')
    plt.loglog(x_centers*1e6, hist_bc,  'k-', label = 'pure bc')
    plt.loglog(x_centers*1e6, hist_so4,  'b-', label = 'pure so4')
    plt.loglog(x_centers*1e6, hist_mixed,  'g-', label = 'mixed so4 and bc')
    plt.axis([1e-3, 2e-0, 1e-1, 1e4])
    plt.xlabel("dry diameter / micrometer")
    plt.ylabel("number density / cm^{-3}")
    plt.legend(loc = "upper left")
    plt.grid(True)
    fig = plt.gcf()
    fig.savefig(out_filename)
    np.savetxt("diameter_values.txt", x_centers*1e6)
    np.savetxt(out_data_name+"_total_acc_bc1.txt", hist)
    np.savetxt(out_data_name+"_bc_acc_bc1.txt", hist_bc)
    np.savetxt(out_data_name+"_so4_acc_bc1.txt", hist_so4)
    np.savetxt(out_data_name+"_mixed_acc_bc1.txt", hist_mixed)
Ejemplo n.º 28
0
def make_plot(in_dir, in_filename, out_filename):
    print in_filename
    ncf = scipy.io.netcdf.netcdf_file(in_dir + in_filename, 'r')
    particles = partmc.aero_particle_array_t(ncf)
    ncf.close()

    x_axis = partmc.log_grid(min=1e-10, max=1e-4, n_bin=100)
    x_centers = x_axis.centers()

    dry_diameters = particles.dry_diameters()

    hist = partmc.histogram_1d(dry_diameters,
                               x_axis,
                               weights=1 / particles.comp_vols)

    plt.clf()
    plt.loglog(x_axis.centers(), hist)
    plt.axis([1e-10, 1e-4, 1e7, 1e15])
    plt.xlabel("dry diameter (m)")
    plt.ylabel("number density (m^{-3})")
    fig = plt.gcf()
    fig.savefig(out_filename)
Ejemplo n.º 29
0
def make_plot(in_filename, out_filename, title):
    ncf = scipy.io.netcdf.netcdf_file(in_filename, 'r')
    particles = partmc.aero_particle_array_t(ncf)
    ncf.close()

    bc_volume = particles.volumes(include=["BC"])
    bc = particles.masses(include=["BC"])
    dry_mass = particles.masses(exclude=["H2O"])
    bc_frac = bc / dry_mass
    coat_frac = 1 - bc / dry_mass

    is_bc = (bc_frac > 0.05)
    dry_diameters = particles.dry_diameters()

    core_diameters = (6 / math.pi * bc_volume)**(1. / 3.)
    coating_thickness = (dry_diameters - core_diameters) / 2.
    ratio = coating_thickness / dry_diameters

    print ratio.max()
    x_axis = partmc.linear_grid(min=0, max=ratio.max(), n_bin=50)

    hist1d = partmc.histogram_1d(coating_thickness[is_bc] /
                                 dry_diameters[is_bc],
                                 x_axis,
                                 weights=1 / particles.comp_vols[is_bc])
    print hist1d
    plt.clf()
    a = plt.gca()
    a.set_xscale("linear")
    a.set_yscale("log")
    plt.plot(x_axis.centers(), hist1d)
    plt.axis([x_axis.min, x_axis.max, 1e8, 1e12])
    plt.grid(True)
    plt.xlabel("coating thickness / dry diameter")
    plt.ylabel("number concentration (m^{-3})")
    plt.title(title)
    fig = plt.gcf()
    fig.savefig(out_filename)
Ejemplo n.º 30
0
def get_plot_data(filename, value_min=None, value_max=None):
    ncf = scipy.io.netcdf.netcdf_file(filename, 'r')
    particles = partmc.aero_particle_array_t(ncf)
    env_state = partmc.env_state_t(ncf)
    ncf.close()

    diameters = particles.dry_diameters() * 1e6
    comp_frac = particles.masses(include = ["BC"]) \
                / particles.masses(exclude = ["H2O"]) * 100
    # hack to avoid landing just around the integer boundaries
    comp_frac *= (1.0 + 1e-12)
    h2o = particles.masses(include=["H2O"]) * 1e18  # kg to fg

    x_axis = partmc.log_grid(min=diameter_axis_min,
                             max=diameter_axis_max,
                             n_bin=num_diameter_bins * 2)
    y_axis = partmc.linear_grid(min=bc_axis_min,
                                max=bc_axis_max,
                                n_bin=num_bc_bins * 2)

    value = partmc.multival_2d(diameters, comp_frac, h2o, x_axis, y_axis)

    return (value, x_axis.edges(), y_axis.edges(), env_state)
Ejemplo n.º 31
0
def make_plot(netcdf_pattern, aging_ss, output_pkl):
    particle_set = {}

    netcdf_dir = "/Users/nriemer/subversion/partmc/trunk/scenarios/1_urban_plume/out"
    time_filename_list = partmc.get_time_filename_list(netcdf_dir,
                                                       netcdf_pattern)

    for [time, filename, key] in time_filename_list:
        print time, filename, key
        ncf = scipy.io.netcdf.netcdf_file(filename, 'r')
        particles = partmc.aero_particle_array_t(ncf)
        removed_info = partmc.aero_removed_info_t(ncf)
        env_state = partmc.env_state_t(ncf)
        ncf.close()

        dry_diameters = particles.dry_diameters()
        s_crit = (particles.critical_rel_humids(env_state) - 1) * 100

        bc = particles.masses(include=["BC"])
        no3 = particles.masses(include=["NO3"])
        so4 = particles.masses(include=["SO4"])
        nh4 = particles.masses(include=["NH4"])

        dry_mass = particles.masses(exclude=["H2O"])
        bc_frac = bc / dry_mass
        no3_frac = no3 / dry_mass
        so4_frac = so4 / dry_mass
        nh4_frac = nh4 / dry_mass
        solute_frac = (no3 + so4 + nh4) / dry_mass

        kappas = particles.kappas()
        comp_vols = particles.comp_vols
        h2o = particles.masses(include=["H2O"])

        for id in particle_set.keys():
            while particle_set[id].current_id in removed_info.ids:
                i = np.nonzero(
                    removed_info.ids == particle_set[id].current_id)[0][0]
                if removed_info.actions[i] != removed_info.AERO_INFO_COAG:
                    particle_set[id].remove_time = time
                    particle_set[id].current_id = 0
                else:
                    particle_set[id].current_id = removed_info.other_ids[i]

        for i in range(len(particles.ids)):
            id = particles.ids[i]
            if id not in particle_set:
                particle_set[id] = Struct()
                particle_set[id].current_id = id
                particle_set[id].emit_time = time
                particle_set[id].emit_diam = dry_diameters[i]
                particle_set[id].emit_s_crit = s_crit[i]
                particle_set[id].emit_kappa = kappas[i]
                particle_set[id].remove_time = -1
                particle_set[id].aged_flag = False
                particle_set[id].aging_time = -1
                particle_set[id].min_s_crit = s_crit[i]
                particle_set[id].emit_bc_fraction = bc_frac[i]
                particle_set[id].emit_comp_vols = comp_vols[i]
                particle_set[id].aging_kappa = -1
                particle_set[id].aging_h2o = -1
                particle_set[id].aging_no3_fraction = -1
                particle_set[id].aging_so4_fraction = -1
                particle_set[id].aging_nh4_fraction = -1
                particle_set[id].aging_solute_fraction = -1
                particle_set[id].aging_diameter = -1

        for id in particle_set.keys():
            if particle_set[id].current_id in particles.ids:
                i = np.nonzero(
                    particles.ids == particle_set[id].current_id)[0][0]
                if s_crit[i] <= particle_set[id].min_s_crit:
                    particle_set[id].min_s_crit = s_crit[i]
                if (s_crit[i] <= aging_ss) and (particle_set[id].aged_flag
                                                == False):
                    particle_set[id].aging_time = time
                    particle_set[id].aged_flag = True
                    particle_set[id].aging_kappa = kappas[i]
                    particle_set[id].aging_diameter = dry_diameters[i]
                    particle_set[id].aging_h2o = h2o[i]
                    particle_set[id].aging_no3_fraction = no3_frac[i]
                    particle_set[id].aging_so4_fraction = so4_frac[i]
                    particle_set[id].aging_nh4_fraction = nh4_frac[i]
                    particle_set[id].aging_solute_fraction = solute_frac[i]

    output = open(output_pkl, 'wb')
    pickle.dump(particle_set, output)
    output.close()
i_loop_max = config.i_loop_max
i_ens_max = config.i_ens_max

netcdf_dir = "/home/nriemer/subversion/partmc/branches/nriemer/local_scenarios/brownian_test_paper2/out/"

array_num_init = np.zeros([i_loop_max*i_ens_max])
array_mass_init = np.zeros([i_loop_max*i_ens_max])

array_num_end = np.zeros([i_loop_max*i_ens_max])
array_mass_end = np.zeros([i_loop_max*i_ens_max])

for i_loop in range (0, i_ens_max*i_loop_max):
    filename = "brownian_part_%05d_00000001.nc"  % (i_loop+1)
    print filename
    ncf = scipy.io.netcdf.netcdf_file(netcdf_dir+filename, 'r')
    particles = partmc.aero_particle_array_t(ncf)
    env_state = partmc.env_state_t(ncf)
    ncf.close()

    total_number = sum(1/particles.comp_vols)
    total_dry_mass = sum(particles.masses()/particles.comp_vols)

    array_num_init[i_loop] = total_number
    array_mass_init[i_loop]= total_dry_mass
 
    filename = "brownian_part_%05d_00000002.nc"  % (i_loop+1)
    print filename
    ncf = scipy.io.netcdf.netcdf_file(netcdf_dir+filename, 'r')
    particles = partmc.aero_particle_array_t(ncf)
    env_state = partmc.env_state_t(ncf)
    ncf.close()
Ejemplo n.º 33
0
def grid_box_histogram(time):

    # filename prefix
    dir = config.data_dir
    prefix = config.file_prefix
    filename =  '%s_%08i.nc' %(prefix,time)

    # make grids
    diam_axis = partmc.log_grid(min=1e-9,max=1e-6,n_bin=60)
    bc_axis = partmc.linear_grid(min=0,max=1.,n_bin=50)

    # load the file
    ncf = scipy.io.netcdf.netcdf_file(config.data_dir+'/'+filename, 'r')
    particles = partmc.aero_particle_array_t(ncf)
    ncf.close()

    # compute the values
    bc = particles.masses(include = ["BC"])
    dry_mass = particles.masses(exclude = ["H2O"])
    bc_frac = bc / dry_mass
    dry_diameters = particles.dry_diameters()

    # 2D histogram
    hist_2d_bc = partmc.histogram_2d(dry_diameters, bc_frac, diam_axis, bc_axis,
         weights = 1 / particles.comp_vols)
    # convert
    hist_2d_bc /= 1e6

    # create the figure
    width_in = 4.0 
    (figure, axes, cbar_axes) = mpl_helper.make_fig(figure_width=width_in,
        colorbar=True,left_margin=.7,right_margin=1.1, top_margin=0.3,
        bottom_margin=.65, colorbar_height_fraction=0.8)

    # Data min and max
    # we want this to be fixed for all time
    data_min = 10**2 #min(data_mins)
    data_max = 10**6 #max(data_maxes)

    norm = matplotlib.colors.LogNorm(vmin=data_min, vmax=data_max)
    p = axes.pcolormesh(diam_axis.edges()/1e-6, bc_axis.edges()*100, 
        hist_2d_bc.transpose(),norm = norm, linewidths = 0.1, edgecolors='None')

    # make the plot pretty
    axes.set_xscale('log')
    axes.set_yscale('linear')
    xlabel = r'diameter $(\mu \rm m)$'
    ylabel = r'BC mass fraction'
    axes.set_xlabel(xlabel)
    axes.set_ylabel(ylabel)
    axes.set_xlim(.005,1)
    axes.set_ylim(0,80)
    axes.set_yticks([0,20,40,60,80])
    axes.grid(True)

    # colorbar
    cbar = figure.colorbar(p, cax=cbar_axes,
                format=matplotlib.ticker.LogFormatterMathtext(),
                orientation='vertical')
    kwargs = {}
    kwargs["format"] = matplotlib.ticker.LogFormatterMathtext()
    cmappable = matplotlib.cm.ScalarMappable(norm=norm)
    cmappable.set_array(numpy.array([hist_2d_bc.min(), hist_2d_bc.max()]))
    cbar_label = r"num. conc. $(\rm cm^{-3})$"
    cbar.set_label(cbar_label)
    cbar.solids.set_edgecolor("face")

    # Save figure and print name
    fig_name = '%s/bc_plot_%08i.pdf' % \
         (config.fig_dir, time)
    figure.savefig(fig_name)

    # print name in case we need it
    print fig_name

    return