Ejemplo n.º 1
0
def min_distance():
    IMG_PATH = "./tracks/loop.png"
    track = load_track(IMG_PATH)

    # Set to a valid point in trajectory
    starting_position = (150., 200.)
    car = PointCar(*starting_position)
    n_loops = 1
    trellis = path_finding.find_valid_trajectory(car,
                                                 track,
                                                 loops=n_loops,
                                                 states=31)
    split_idx = (len(trellis) // n_loops) + 1 if n_loops > 1 else 0

    c_idx = len(trellis[0]) // 2
    in_idx = 0
    centerline = [t[c_idx] for t in trellis]
    print_stats(centerline)
    inner_contour = [t[in_idx] for t in trellis]
    print_stats(inner_contour)

    path_v = viterbi.additive_viterbi(trellis, alpha=1.0, beta=0.0)
    print_stats(path_v[split_idx:2 * split_idx])
    path_s = optimal.run(trellis, alpha=1.0, beta=0.0)
    print_stats(path_s[split_idx:2 * split_idx])

    xv = [i[0] for i in path_v[split_idx:2 * split_idx]]
    yv = [i[1] for i in path_v[split_idx:2 * split_idx]]
    xs = [i[0] for i in path_s[split_idx:2 * split_idx]]
    ys = [i[1] for i in path_s[split_idx:2 * split_idx]]

    if a.plot:
        fig, ax = plt.subplots()
        ax.imshow(track)
        plt.xlabel("Meters")
        plt.ylabel("Meters")
        ax.fill(xv,
                yv,
                facecolor='none',
                edgecolor='green',
                linestyle="-",
                label="Distance Objective")

        fig, ax = plt.subplots()
        ax.imshow(track)
        plt.xlabel("Meters")
        plt.ylabel("Meters")
        ax.fill(xs,
                ys,
                facecolor='none',
                edgecolor='blue',
                linestyle="-",
                label="Time Objective")
        plt.show()
Ejemplo n.º 2
0
def state_tradeoff():
    IMG_PATH = "./tracks/loop.png"
    track = load_track(IMG_PATH)

    # Set to a valid point in trajectory
    starting_position = (150., 200.)
    car = PointCar(*starting_position)
    for s in [1, 5, 10, 20, 40, 80]:
        n_loops = 3
        trellis = path_finding.find_valid_trajectory(car,
                                                     track,
                                                     loops=n_loops,
                                                     states=s)
        split_idx = (len(trellis) // n_loops) + 1 if n_loops > 1 else 0
        path_v = viterbi.additive_viterbi(trellis, alpha=1.0,
                                          beta=0.0)[split_idx:2 * split_idx]
        print_stats(path_v)
        path_s = optimal.run(trellis, alpha=1.0,
                             beta=0.0)[split_idx:2 * split_idx]
        print_stats(path_s)
Ejemplo n.º 3
0
def min_time():
    IMG_PATH = "./tracks/loop.png"
    track = load_track(IMG_PATH)

    # Set to a valid point in trajectory
    starting_position = (150., 200.)
    car = PointCar(*starting_position)
    n_loops = 3
    trellis = path_finding.find_valid_trajectory(car,
                                                 track,
                                                 loops=n_loops,
                                                 states=30)
    split_idx = (len(trellis) // n_loops) + 1 if n_loops > 1 else 0

    path_v = viterbi.additive_viterbi(trellis, alpha=1.0, beta=0.0)
    print_stats(path_v[split_idx:2 * split_idx])
    path_s = optimal.run(trellis, alpha=0.5, beta=0.5)
    print_stats(path_s[split_idx:])

    xv = [i[0] for i in path_v[split_idx:2 * split_idx]]
    yv = [i[1] for i in path_v[split_idx:2 * split_idx]]
    xs = [i[0] for i in path_v[split_idx:2 * split_idx]]
    ys = [i[1] for i in path_v[split_idx:2 * split_idx]]

    if a.plot:
        fig1, ax1 = plt.subplots()
        ax1.imshow(track)
        plt.xlabel("Meters")
        plt.ylabel("Meters")
        ax1.fill(xv, yv, facecolor='none', edgecolor='green', linestyle="-")

        fig2, ax2 = plt.subplots()
        ax2.imshow(track)
        plt.xlabel("Meters")
        plt.ylabel("Meters")
        ax2.fill(xs, ys, facecolor='none', edgecolor='blue', linestyle="-")
        plt.show()
Ejemplo n.º 4
0
    nopass = [x for x in range(mgraph.shape[0]) if x != start]
    dis = mgraph[start]

    while len(nopass):
        idx = nopass[0]
        for i in nopass:
            if dis[i] < dis[idx]: idx = i

        nopass.remove(idx)
        passed.append(idx)

        for i in nopass:
            if dis[idx] + mgraph[idx][i] < dis[i]: dis[i] = dis[idx] + mgraph[idx][i]
    return dis


if __name__ == "__main__":
    IMG_PATH = "./tracks/loop.png"
    track = load_track(IMG_PATH)

    a = datetime.datetime.now()
    # Set to a valid point in trajectory
    car = PointCar(150, 200)
    trellis = find_valid_trajectory(car, track)
    matrix = build_matrix(trellis)
    dijstra_m = dijstra_O2(0, matrix)
    for item in dijstra_m[-10:]:
        print(item)

    b = datetime.datetime.now()
    print(b-a)
Ejemplo n.º 5
0
        print(metrics.summed_distance(x, y))

        car = PointCar(*path[0])
        car.theta = car.heading(path[1])
        for coor in path[1:]:
            car.update(coor, is_coor=True)

        print(car.travel_time)

if __name__ == "__main__":
    IMG_PATH = "./tracks/loop.png"
    track = load_track(IMG_PATH)
    # Set to a valid point in trajectory
    car = PointCar(150, 200)
    STATES = 30 # a waypoint for every 0.5 of the track width
    trellis = find_valid_trajectory(car, track, states=STATES)

    run_gridsearch(trellis, n_segments=10)

    # path = run(trellis, alpha=.9, beta=0.1)
    # x = [i[0] for i in path]
    # y = [i[1] for i in path]
    # print(metrics.summed_distance(x, y))

    # car = PointCar(*path[0])
    # car.theta = car.heading(path[1])
    # for coor in path[1:]:
    #     car.update(coor, is_coor=True)

    # print(car.travel_time)
Ejemplo n.º 6
0
    track = load_track(IMG_PATH)

    # Set to a valid point in trajectory
    starting_position = (150., 200.)
    car = PointCar(*starting_position)

    fig, ax = plt.subplots()
    ax.imshow(track)
    plt.xlabel("Meters")
    plt.ylabel("Meters")
    # baseline_trellis = find_valid_trajectory(car, track, states=1)
    # baseline = additive_viterbi(baseline_trellis, starting_position, centerline_score)
    # ax.fill(baseline[:,0], baseline[:,1], facecolor='none', edgecolor='black', linestyle="-.", label="Centerline")

    n_loops = 2
    trellis = find_valid_trajectory(car, track, loops=n_loops, states=30)
    split_idx = (len(trellis) // n_loops) + 1 if n_loops > 1 else 0

    time = additive_viterbi(trellis)
    ax.fill(time[split_idx:,0], time[split_idx:,1], facecolor='none', edgecolor='red', linestyle="-", label="Time Objective")

    # distance = additive_viterbi(trellis, starting_position, distance_score)
    # ax.fill(distance[:split_idx,0], distance[:split_idx,1], facecolor='none', edgecolor='blue', linestyle="-", label="Distance Objective")
    plt.legend(loc=4)
    plt.show()

    ## Trellis Video plot
    # fig = plt.figure()
    # for states in trellis:
    #     plt.imshow(track)
    #     plt.xlabel("Meter")