Ejemplo n.º 1
0
def MyParallelPool(nodes=None):
    if nodes is None or nodes > 1:
        p = ParallelPool(nodes)
        try:
            yield p
        finally:
            p.close()
            p.join()
            p.clear()
    else:
        #print("Using PseudoPool!")
        yield PseudoPool()
Ejemplo n.º 2
0
def run_parallel_gray(gfile, qargs, hosts):

    g_ = load_graph(gfile)
    query_, cond_, _, _, _, _ = parse_args(qargs)

    # Find query candidates
    q_seed_ = list(query_.nodes())[0]
    kl = Condition.get_node_label(query_, q_seed_)
    kp = Condition.get_node_props(query_, q_seed_)
    seeds = Condition.filter_nodes(g_, kl, kp)  # Find all candidates
    if not seeds:  ## No seed candidates
        print("No more seed vertices available. Exit G-Ray algorithm.")
        return

    # Split seed list
    num_seeds = len(seeds)
    num_hosts = len(hosts)
    num_members = num_seeds / num_hosts
    seed_lists = list()
    for i in range(num_hosts):
        st = i * num_members
        ed = num_seeds if (i == num_hosts - 1) else (i + 1) * num_members
        seed_lists.append(seeds[st:ed])

    servers = tuple([":".join([addr, port]) for addr in hosts])

    st = time.time()
    pool = Pool(1, servers=servers)
    ret = pool.amap(
        partial(process_multiple_gray,
                g_file=gfile,
                q_seed=q_seed_,
                q_args=qargs), seed_lists)
    print(ret.get())

    pool.close()
    pool.join()
    ed = time.time()
    print("Parallel G-Ray time: %f" % (ed - st))
Ejemplo n.º 3
0
#!/usr/bin/env python
#
# Author: Mike McKerns (mmckerns @caltech and @uqfoundation)
# Copyright (c) 1997-2016 California Institute of Technology.
# Copyright (c) 2016-2018 The Uncertainty Quantification Foundation.
# License: 3-clause BSD.  The full license text is available at:
#  - https://github.com/uqfoundation/pathos/blob/master/LICENSE

from pathos.parallel import stats
from pathos.parallel import ParallelPool as Pool
pool = Pool()


def host(id):
    import socket
    import time
    time.sleep(1.0)
    return "Rank: %d -- %s" % (id, socket.gethostname())


print("Evaluate 10 items on 2 cpus")  #FIXME: reset lport below
pool.ncpus = 2
pool.servers = ('localhost:5653', )
res5 = pool.map(host, range(10))
print(pool)
print('\n'.join(res5))
print(stats())
print('')

# end of file
Ejemplo n.º 4
0
#!/usr/bin/env python
#
# Author: Mike McKerns (mmckerns @caltech and @uqfoundation)
# Copyright (c) 1997-2016 California Institute of Technology.
# License: 3-clause BSD.  The full license text is available at:
#  - http://trac.mystic.cacr.caltech.edu/project/pathos/browser/pathos/LICENSE

from pathos.parallel import stats
from pathos.parallel import ParallelPool as Pool
pool = Pool()

def host(id):
    import socket
    return "Rank: %d -- %s" % (id, socket.gethostname())


print "Evaluate 10 items on 1 cpu"
pool.ncpus = 1
res3 = pool.map(host, range(10))
print pool
print '\n'.join(res3)
print stats()

print "Evaluate 10 items on 2 cpus"
pool.ncpus = 2
res5 = pool.map(host, range(10)) 
print pool
print '\n'.join(res5)
print stats()

# end of file
Ejemplo n.º 5
0
#!/usr/bin/python
import os
import urllib
import operator
import timing

from pathos.parallel import ParallelPool as Pool
pool = Pool()



#url = 'http://www.gutenberg.org/cache/epub/25990/pg25990.txt'
#f = urllib.urlopen(url)

manager_address = 'localhost'

f = open('/root/homework/pg25990.txt')

def info(title):
    print title
    print 'module name:', __name__
    if hasattr(os, 'getppid'):
        print 'parent process:', os.getppid()
    print 'process id:', os.getpid()

@timing.timed
def m_word_list(file):
    info('server word_list function')
    words = []
    words.append(f.read().split())
#    print words
Ejemplo n.º 6
0
#!/usr/bin/env python
#
# Author: Mike McKerns (mmckerns @caltech and @uqfoundation)
# Copyright (c) 1997-2016 California Institute of Technology.
# Copyright (c) 2016-2022 The Uncertainty Quantification Foundation.
# License: 3-clause BSD.  The full license text is available at:
#  - https://github.com/uqfoundation/pathos/blob/master/LICENSE

from pathos.parallel import stats
from pathos.parallel import ParallelPool as Pool
pool = Pool()

def host(id):
    import socket
    return "Rank: %d -- %s" % (id, socket.gethostname())


print("Evaluate 10 items on 1 cpu")
pool.ncpus = 1
res3 = pool.map(host, range(10))
print(pool)
print('\n'.join(res3))
print(stats())

print("Evaluate 10 items on 2 cpus")
pool.ncpus = 2
res5 = pool.map(host, range(10)) 
print(pool)
print('\n'.join(res5))
print(stats())
Ejemplo n.º 7
0
'''
Created on 30 Aug 2020

@author: snake91
'''

from pathos.parallel import ParallelPool as Pool
import time
pool = Pool()


def host(idhost):
    import socket
    from math import sin
    sumhost = 0
    for i in range(1, 1000):
        for j in range(1, 10000):
            sumhost = sumhost + sin(i / j)

    return "Rank: %d -- %s. %f" % (idhost, socket.gethostname(),
                                   sumhost + idhost)


pool.ncpus = 20
print("Evaluate on " + str(pool.ncpus) + " cpus")

pool.servers = ('192.168.1.113:5653', '192.168.1.109:5654')

res5 = pool.amap(host, range(16))
while not res5.ready():
    time.sleep(1)
Ejemplo n.º 8
0
#!/usr/bin/env python
#
# Author: Mike McKerns (mmckerns @caltech and @uqfoundation)
# Copyright (c) 1997-2016 California Institute of Technology.
# Copyright (c) 2016-2019 The Uncertainty Quantification Foundation.
# License: 3-clause BSD.  The full license text is available at:
#  - https://github.com/uqfoundation/pathos/blob/master/LICENSE

from pathos.parallel import stats
from pathos.parallel import ParallelPool as Pool
pool = Pool()

def host(id):
    import socket
    import time
    time.sleep(1.0)
    return "Rank: %d -- %s" % (id, socket.gethostname())


print("Evaluate 10 items on 2 cpus") #FIXME: reset lport below
pool.ncpus = 2
pool.servers = ('localhost:5653',)
res5 = pool.map(host, range(10))
print(pool)
print('\n'.join(res5))
print(stats())
print('')

# end of file
Ejemplo n.º 9
0
from functools import partial

sys.path.append(".")
from patternmatching.gray.parallel.query_call import parse_args
from patternmatching.gray import rwr, extract
from patternmatching.query.Condition import *


# https://stackoverflow.com/questions/26876898/python-multiprocessing-with-distributed-cluster/26948258
def sleepy_squared(x):
    from time import sleep
    sleep(0.5)
    return x**2


p = Pool(4)
res = p.amap(sleepy_squared, range(10))
print(res.get())

################

port = "5000"


def load_graph(graph_json):
    with open(graph_json, "r") as f:
        json_data = json.load(f)
        graph = json_graph.node_link_graph(json_data)
    numv = graph.number_of_nodes()
    nume = graph.number_of_edges()
    print("Input Graph: " + str(numv) + " vertices, " + str(nume) + " edges")
Ejemplo n.º 10
0
from pathos.parallel import ParallelPool as Pool
pool = Pool()


def host(id):
    import socket
    import time
    time.sleep(1.0)
    return "Rank: %d -- %s" % (id, socket.gethostname())


print("Evaluate 10 items on 2 cpus")  #FIXME: reset lport below
pool.ncpus = 2
pool.servers = ('56v6f22-l:55577', )
res5 = pool.map(host, range(10))
print(pool)
print('\n'.join(res5))
# print(stats())
print('')

# end of file