Ejemplo n.º 1
0
def _generate_rhs(contrasts, columns_var_gt_0) -> list[Term]:
    rhs = [Term([])]  # force intercept
    for contrast in contrasts:
        if contrast["type"] == "infer":
            if not columns_var_gt_0[contrast["variable"]].all():
                logger.warning(
                    f'Not adding term "{contrast["variable"]}" to design matrix '
                    "because it has zero variance")
                continue
            # for every term in the model a contrast of type infer needs to be specified
            rhs.append(
                Term([LookupFactor(name) for name in contrast["variable"]]))

    return rhs
Ejemplo n.º 2
0
def make_termlist(*entries):
    terms = []
    for entry in entries:
        terms.append(Term([LookupFactor(name) for name in entry]))
    return terms
Ejemplo n.º 3
0
def test_formula_likes():
    # Plain array-like, rhs only
    t([[1, 2, 3], [4, 5, 6]], {}, 0, False, [[1, 2, 3], [4, 5, 6]],
      ["x0", "x1", "x2"])
    t((None, [[1, 2, 3], [4, 5, 6]]), {}, 0, False, [[1, 2, 3], [4, 5, 6]],
      ["x0", "x1", "x2"])
    t(np.asarray([[1, 2, 3], [4, 5, 6]]), {}, 0, False, [[1, 2, 3], [4, 5, 6]],
      ["x0", "x1", "x2"])
    t((None, np.asarray([[1, 2, 3], [4, 5, 6]])), {}, 0, False,
      [[1, 2, 3], [4, 5, 6]], ["x0", "x1", "x2"])
    dm = DesignMatrix([[1, 2, 3], [4, 5, 6]], default_column_prefix="foo")
    t(dm, {}, 0, False, [[1, 2, 3], [4, 5, 6]], ["foo0", "foo1", "foo2"])
    t((None, dm), {}, 0, False, [[1, 2, 3], [4, 5, 6]],
      ["foo0", "foo1", "foo2"])

    # Plain array-likes, lhs and rhs
    t(([1, 2], [[1, 2, 3], [4, 5, 6]]), {}, 0, False, [[1, 2, 3], [4, 5, 6]],
      ["x0", "x1", "x2"], [[1], [2]], ["y0"])
    t(([[1], [2]], [[1, 2, 3], [4, 5, 6]]), {}, 0, False,
      [[1, 2, 3], [4, 5, 6]], ["x0", "x1", "x2"], [[1], [2]], ["y0"])
    t((np.asarray([1, 2]), np.asarray([[1, 2, 3], [4, 5, 6]])), {}, 0, False,
      [[1, 2, 3], [4, 5, 6]], ["x0", "x1", "x2"], [[1], [2]], ["y0"])
    t((np.asarray([[1], [2]]), np.asarray([[1, 2, 3], [4, 5, 6]])), {}, 0,
      False, [[1, 2, 3], [4, 5, 6]], ["x0", "x1", "x2"], [[1], [2]], ["y0"])
    x_dm = DesignMatrix([[1, 2, 3], [4, 5, 6]], default_column_prefix="foo")
    y_dm = DesignMatrix([1, 2], default_column_prefix="bar")
    t((y_dm, x_dm), {}, 0, False, [[1, 2, 3], [4, 5, 6]],
      ["foo0", "foo1", "foo2"], [[1], [2]], ["bar0"])
    # number of rows must match
    t_invalid(([1, 2, 3], [[1, 2, 3], [4, 5, 6]]), {}, 0)

    # tuples must have the right size
    t_invalid(([[1, 2, 3]], ), {}, 0)
    t_invalid(([[1, 2, 3]], [[1, 2, 3]], [[1, 2, 3]]), {}, 0)

    # plain Series and DataFrames
    if have_pandas:
        # Names are extracted
        t(pandas.DataFrame({"x": [1, 2, 3]}), {}, 0, False, [[1], [2], [3]],
          ["x"])
        t(pandas.Series([1, 2, 3], name="asdf"), {}, 0, False, [[1], [2], [3]],
          ["asdf"])
        t((pandas.DataFrame({"y": [4, 5, 6]
                             }), pandas.DataFrame({"x": [1, 2, 3]})), {}, 0,
          False, [[1], [2], [3]], ["x"], [[4], [5], [6]], ["y"])
        t((pandas.Series([4, 5, 6],
                         name="y"), pandas.Series([1, 2, 3], name="x")), {}, 0,
          False, [[1], [2], [3]], ["x"], [[4], [5], [6]], ["y"])
        # Or invented
        t((pandas.DataFrame([[4, 5, 6]]),
           pandas.DataFrame([[1, 2, 3]], columns=[7, 8, 9])), {}, 0, False,
          [[1, 2, 3]], ["x7", "x8", "x9"], [[4, 5, 6]], ["y0", "y1", "y2"])
        t(pandas.Series([1, 2, 3]), {}, 0, False, [[1], [2], [3]], ["x0"])
        # indices must match
        t_invalid((pandas.DataFrame(
            [[1]], index=[1]), pandas.DataFrame([[1]], index=[2])), {}, 0)

    # Foreign ModelDesc factories
    class ForeignModelSource(object):
        def __patsy_get_model_desc__(self, data):
            return ModelDesc([Term([LookupFactor("Y")])],
                             [Term([LookupFactor("X")])])

    foreign_model = ForeignModelSource()
    t(foreign_model, {
        "Y": [1, 2],
        "X": [[1, 2], [3, 4]]
    }, 0, True, [[1, 2], [3, 4]], ["X[0]", "X[1]"], [[1], [2]], ["Y"])

    class BadForeignModelSource(object):
        def __patsy_get_model_desc__(self, data):
            return data

    t_invalid(BadForeignModelSource(), {}, 0)

    # string formulas
    t("y ~ x", {
        "y": [1, 2],
        "x": [3, 4]
    }, 0, True, [[1, 3], [1, 4]], ["Intercept", "x"], [[1], [2]], ["y"])
    t("~ x", {
        "y": [1, 2],
        "x": [3, 4]
    }, 0, True, [[1, 3], [1, 4]], ["Intercept", "x"])
    t("x + y", {
        "y": [1, 2],
        "x": [3, 4]
    }, 0, True, [[1, 3, 1], [1, 4, 2]], ["Intercept", "x", "y"])

    # unicode objects on py2 (must be ascii only)
    if not six.PY3:
        # ascii is fine
        t(unicode("y ~ x"), {
            "y": [1, 2],
            "x": [3, 4]
        }, 0, True, [[1, 3], [1, 4]], ["Intercept", "x"], [[1], [2]], ["y"])
        # non-ascii is not (even if this would be valid on py3 with its less
        # restrict variable naming rules)
        eacute = "\xc3\xa9".decode("utf-8")
        assert isinstance(eacute, unicode)
        assert_raises(PatsyError, dmatrix, eacute, data={eacute: [1, 2]})

    # ModelDesc
    desc = ModelDesc([], [Term([LookupFactor("x")])])
    t(desc, {"x": [1.5, 2.5, 3.5]}, 0, True, [[1.5], [2.5], [3.5]], ["x"])
    desc = ModelDesc([], [Term([]), Term([LookupFactor("x")])])
    t(desc, {"x": [1.5, 2.5, 3.5]}, 0, True, [[1, 1.5], [1, 2.5], [1, 3.5]],
      ["Intercept", "x"])
    desc = ModelDesc([Term([LookupFactor("y")])],
                     [Term([]), Term([LookupFactor("x")])])
    t(desc, {
        "x": [1.5, 2.5, 3.5],
        "y": [10, 20, 30]
    }, 0, True, [[1, 1.5], [1, 2.5], [1, 3.5]], ["Intercept", "x"],
      [[10], [20], [30]], ["y"])

    # builders
    termlists = (
        [],
        [Term([LookupFactor("x")])],
        [Term([]), Term([LookupFactor("x")])],
    )
    builders = design_matrix_builders(termlists,
                                      lambda: iter([{
                                          "x": [1, 2, 3]
                                      }]),
                                      eval_env=0)
    # twople but with no LHS
    t((builders[0], builders[2]), {"x": [10, 20, 30]}, 0, True,
      [[1, 10], [1, 20], [1, 30]], ["Intercept", "x"])
    # single DesignInfo
    t(builders[2], {"x": [10, 20, 30]}, 0, True, [[1, 10], [1, 20], [1, 30]],
      ["Intercept", "x"])
    # twople with LHS
    t((builders[1], builders[2]), {"x": [10, 20, 30]}, 0, True,
      [[1, 10], [1, 20], [1, 30]], ["Intercept", "x"], [[10], [20], [30]],
      ["x"])

    # check depth arguments
    x_in_env = [1, 2, 3]
    t("~ x_in_env", {}, 0, True, [[1, 1], [1, 2], [1, 3]],
      ["Intercept", "x_in_env"])
    t("~ x_in_env", {"x_in_env": [10, 20, 30]}, 0, True,
      [[1, 10], [1, 20], [1, 30]], ["Intercept", "x_in_env"])
    # Trying to pull x_in_env out of our *caller* shouldn't work.
    t_invalid("~ x_in_env", {}, 1, exc=(NameError, PatsyError))

    # But then again it should, if called from one down on the stack:
    def check_nested_call():
        x_in_env = "asdf"
        t("~ x_in_env", {}, 1, True, [[1, 1], [1, 2], [1, 3]],
          ["Intercept", "x_in_env"])

    check_nested_call()
    # passing in an explicit EvalEnvironment also works:
    e = EvalEnvironment.capture(1)
    t_invalid("~ x_in_env", {}, e, exc=(NameError, PatsyError))
    e = EvalEnvironment.capture(0)

    def check_nested_call_2():
        x_in_env = "asdf"
        t("~ x_in_env", {}, e, True, [[1, 1], [1, 2], [1, 3]],
          ["Intercept", "x_in_env"])

    check_nested_call_2()
Ejemplo n.º 4
0
 def __patsy_get_model_desc__(self, data):
     return ModelDesc([Term([LookupFactor("Y")])],
                      [Term([LookupFactor("X")])])
print(data[["Label", "f1", "f2", data.columns[-1]]].head())

###################################################
# Let's train a logistic regression.

formula = "Label ~ {0}".format(" + ".join(data.columns[1:]))
print(formula[:50] + " + ...")

from microsoftml import rx_logistic_regression

try:
    logregml = rx_logistic_regression(formula, data=data)
except Exception as e:
    # The error is expected because patsy cannot handle
    # so many features.
    print(e)

#########################################
# Let's skip patsy's parser to manually define the formula
# with object `ModelDesc <http://patsy.readthedocs.io/en/latest/API-reference.html?highlight=lookupfactor#patsy.ModelDesc>`_.

from patsy.desc import ModelDesc, Term
from patsy.user_util import LookupFactor

patsy_features = [Term([LookupFactor(n)]) for n in data.columns[1:]][:10]
model_formula = ModelDesc([Term([LookupFactor("Label")])], [Term([])] + patsy_features)

print(model_formula.describe() + " + ...")
logregml = rx_logistic_regression(model_formula, data=data)