Ejemplo n.º 1
0
def natural_cubic_spline_fit_reg(x, y, dof=5, alpha=0.01):
    if not np.any(np.isnan([x, y])):
        basis = cr(x, df=dof, constraints="center")
        model = Ridge(alpha=alpha).fit(basis, y)
        return model.predict(basis)
    else:
        # Insurance against NAN
        # Solution: Fit only non-nan pairs, leave rest as NAN

        print("Warning, have NAN")

        iNanX = np.isnan(x)
        iNanY = np.isnan(y)
        iNan = np.logical_or(iNanX, iNanY)

        yRez = np.copy(y)
        yRez[iNan] = np.nan
        yRez[~iNan] = natural_cubic_spline_fit_reg(x[~iNan], y[~iNan], dof=dof, alpha=alpha)
        return yRez
    ###  There is a chance that a polygon is repeated twice?
    ###

    X = curr_field['doy']
    y = curr_field['EVI']

    #############################################
    ###
    ###             Smoothen
    ###
    #############################################
    #
    #   Spline
    #
    x_basis = cr(
        X, df=freedom_df, constraints='center'
    )  # Generate spline basis with "freedom_df" degrees of freedom
    model = LinearRegression().fit(x_basis, y)  # Fit model to the data
    spline_pred = model.predict(x_basis)  # Get estimates

    #
    # savitzky
    #

    # differences are minor, but lets keep using Pythons function
    # my_savitzky_pred = rc.savitzky_golay(y, window_size=Sav_win_size, order=sav_order)

    savitzky_pred = scipy.signal.savgol_filter(y,
                                               window_length=Sav_win_size,
                                               polyorder=sav_order)
Ejemplo n.º 3
0
    ###
    ###  There is a chance that a polygon is repeated twice?
    ###

    X = a_field['doy']
    y = a_field['NDVI']
    freedom_df = 7
    #############################################
    ###
    ###             Smoothen
    ###
    #############################################

    # Generate spline basis with "freedom_df" degrees of freedom
    x_basis = cr(X, df=freedom_df, constraints='center')

    # Fit model to the data
    model = LinearRegression().fit(x_basis, y)

    # Get estimates
    y_hat = model.predict(x_basis)

    #############################################
    ###
    ###             find peaks
    ###
    #############################################
    # peaks_LWLS_1 = peakdetect(LWLS_1[:, 1], lookahead = 10, delta=0)
    # max_peaks = peaks_LWLS_1[0]
    # peaks_LWLS_1 = form_xs_ys_from_peakdetect(max_peak_list = max_peaks, doy_vect=X)
Ejemplo n.º 4
0

def powerlaw_random(x, gamma):
    return np.power(x, gamma) + 0.0001 * np.random.normal(0, 1, len(x))


plt.close('all')
x = np.linspace(0, 0.5, 100)
y = powerlaw(x, 2 / 3)
y_noise = powerlaw_random(x, 2 / 3)

param, pcov = curve_fit(powerlaw, x, y_noise)

plt.figure()
plt.plot(x, y, 'k')
plt.scatter(x, y_noise, color='r', alpha=0.5)

n_obs = len(x)

df = 10
# Generate spline basis with 10 degrees of freedom
x_basis = cr(x, df=df, constraints='center')
# Fit model to the data
model = LinearRegression().fit(x_basis, y_noise)
# Get estimates
y_hat = model.predict(x_basis)

# plt.scatter(x, y)
plt.plot(x, y_hat, 'r')
plt.title(f'Natural cubic spline with {df} degrees of freedom')
Ejemplo n.º 5
0
for i in range(0, len(header), 1):
    if header[i] != 'DIS':
        print(header[i])
        xx = data_dictionary[header[i]][:, 0]
        # print(x)
        index = np.intersect1d(DIS_array[:, 0], xx, return_indices=True)

        yy = data_dictionary[header[i]][:, 1] - DIS_array[index[1], 1]

        loc = np.where(np.abs(yy) > 1e-10)[0]
        x = xx[loc]
        y = data_dictionary[header[i]][loc, 1]
        df = len(x) - 1
        # Generate spline basis with 10 degrees of freedom
        x_basis = cr(x, df=df, constraints='center')
        # Fit model to the data
        model = RANSACRegressor().fit(x_basis, y)
        # Get estimates
        y_hat = model.predict(x_basis)

        # plt.scatter(x, y)
        # plt.plot(array_sorted[:,0], y_hat, c[i])
        xplot = np.linspace(np.min(x), np.max(x), 1000)
        x_basis_large = cr(xplot, df=df, constraints='center')
        y_hat = model.predict(x_basis_large)

        cs = CubicSpline(x, y)
        yplot = cs(xplot)
        # # Compare estimated coefficients