Ejemplo n.º 1
0
    def enhance_session(self,
                        session_ids,
                        audio_dir,
                        dataset_slice=False,
                        audio_dir_exist_ok=False):
        """

        Args:
            session_ids:
            audio_dir:
            dataset_slice:
            audio_dir_exist_ok:
                When True: It is ok, when the audio dir exists and the files
                insinde may be overwritten.

        Returns:


        >>> enhancer = get_enhancer(wpe=False, bss_iterations=2)
        >>> for x_hat in enhancer.enhance_session('S02'):
        ...     print(x_hat)
        """
        ensure_single_thread_numeric()

        audio_dir = Path(audio_dir)

        it = self.get_iterator(session_ids)

        if dlp_mpi.IS_MASTER:
            audio_dir.mkdir(exist_ok=audio_dir_exist_ok)

            for dataset in set(mapping.session_to_dataset.values()):
                (audio_dir / dataset).mkdir(exist_ok=audio_dir_exist_ok)

        dlp_mpi.barrier()

        if dataset_slice is not False:
            if dataset_slice is True:
                it = it[:2]
            elif isinstance(dataset_slice, int):
                it = it[:dataset_slice]
            elif isinstance(dataset_slice, slice):
                it = it[dataset_slice]
            else:
                raise ValueError(dataset_slice)

        for ex in dlp_mpi.split_managed(it, allow_single_worker=True):
            x_hat = self.enhance_example(ex)
            example_id = ex["example_id"]
            session_id = ex["session_id"]
            dataset = mapping.session_to_dataset[session_id]

            if x_hat.ndim == 1:
                save_path = audio_dir / f'{dataset}' / f'{example_id}.wav'
                dump_audio(
                    x_hat,
                    save_path,
                )
            else:
                raise NotImplementedError(x_hat.shape)
Ejemplo n.º 2
0
    def enhance_session(
        self,
        session_ids,
        audio_dir,
        test_run=False,
    ):
        """
        >>> enhancer = get_enhancer(wpe=False, bss_iterations=2)
        >>> for x_hat in enhancer.enhance_session('S02'):
        ...     print(x_hat)
        """
        audio_dir = Path(audio_dir)

        it = self.get_iterator(session_ids)

        if mpi.IS_MASTER:
            audio_dir.mkdir()

            for dataset in set(mapping.session_to_dataset.values()):
                (audio_dir / dataset).mkdir()

        mpi.barrier()

        if test_run is not False:
            if test_run is True:
                it = it[:2]
            elif isinstance(test_run, int):
                it = it[:test_run]
            else:
                raise ValueError(test_run)

        for ex in mpi.share_master(it, allow_single_worker=True):
            x_hat = self.enhance_example(ex)
            example_id = ex["example_id"]
            session_id = ex["session_id"]
            dataset = mapping.session_to_dataset[session_id]

            if x_hat.ndim == 1:
                save_path = audio_dir / f'{dataset}' / f'{example_id}.wav'
                dump_audio(
                    x_hat,
                    save_path,
                )
            else:
                raise NotImplementedError(x_hat.shape)
Ejemplo n.º 3
0
    def enhance_session(
        self,
        session_ids,
        audio_dir,
        dataset_slice=False,
        audio_dir_exist_ok=False,
        is_chime=True,
    ):
        """

        Args:
            session_ids:
            audio_dir:
            dataset_slice:
            audio_dir_exist_ok:
                When True: It is ok, when the audio dir exists and the files
                insinde may be overwritten.
            is_chime:
                If true, map the session_id to the dataset name for the folder
                naming. Otherwise keep the session_id for the folder name.
        Returns:


        >>> enhancer = get_enhancer(wpe=False, bss_iterations=2)
        >>> for x_hat in enhancer.enhance_session('S02'):
        ...     print(x_hat)
        """
        ensure_single_thread_numeric()

        audio_dir = Path(audio_dir)

        it = self.get_dataset(session_ids)

        if dlp_mpi.IS_MASTER:
            audio_dir.mkdir(exist_ok=audio_dir_exist_ok)
            # for dataset in self.db.data['alias']:
            #     (audio_dir / dataset).mkdir(exist_ok=audio_dir_exist_ok)

        dlp_mpi.barrier()

        if dataset_slice is not False:
            if dataset_slice is True:
                it = it[:2]
            elif isinstance(dataset_slice, int):
                it = it[:dataset_slice]
            elif isinstance(dataset_slice, slice):
                it = it[dataset_slice]
            else:
                raise ValueError(dataset_slice)

        for ex in dlp_mpi.split_managed(it, allow_single_worker=True):
            try:
                x_hat = self.enhance_example(ex)
                example_id = ex["example_id"]
                session_id = ex["session_id"]
                if is_chime:
                    dataset = mapping.session_to_dataset[session_id]
                else:
                    dataset = session_id

                if x_hat.ndim == 1:
                    save_path = audio_dir / f'{dataset}' / f'{example_id}.wav'
                    dump_audio(x_hat, save_path, mkdir=True)
                else:
                    raise NotImplementedError(x_hat.shape)
            except Exception:
                print('ERROR: Failed example:', ex['example_id'])
                raise