Ejemplo n.º 1
0
    def classification(data):
        # Add channel
        pcimod(file=inputfile, pciop='add', pcival=[0, 0, 1, 0, 0, 0])

        # Define input parameters
        classesNumber = [8]  # define number of classes
        iterations = [10]  # define number iterations
        moveThresh = [0.01]  # define move threshhold

        print "Running unsupervized k-means classification..."
        print "Creating " + str(classesNumber) + " classes, applying " + str(
            iterations) + " iterations at a move-threshhold of " + str(
                moveThresh)

        # Run algorithm and create classification report
        try:
            Report.clear()
            enableDefaultReport(report)
            kclus(file=inputfile,
                  dbic=inputChans,
                  dboc=[chansCount + 1],
                  numclus=classesNumber,
                  maxiter=iterations,
                  movethrs=moveThresh)
        finally:
            enableDefaultReport('term')  # this will close the report file
        flag1 = time.time()
        print "Classification complete! Time elapsed: " + str(
            flag1 - start) + " seconds"
        print ""
Ejemplo n.º 2
0
def kMeansClustering(fileInput, inputChannels,outputChannel):
    mask = []      # Area or window in the input image to process
    numberOfClasses = [5]      # Number of classes
    seedfile = ""
    maximumIterations = [5]      # Number of Iterations for calculating the mean positions
    movethrs = [0.01]     # Movement threshold
    siggen = ""
    backval = []     # Background gray level value to be ignored during classification
    nsam = []      # Number of samples to collect on which to perform the iterative clustering

    try:
        kclus(fileInput, inputChannels, outputChannel, mask, numberOfClasses, seedfile, maximumIterations, movethrs, siggen, backval, nsam)
        print "K means clustering finished"
    except PCIException, e:
        print e
    def classification(self, file, alg):
        if (alg == 'kmeans'):
            print("Your selection is K-means Classification")
        else:
            print("Your selection is Iso-Cluster Classification")
        report = os.getcwd() + "\\Data\\Result\\Report.txt"
        if os.path.isfile(report):
            print("Deleting old Report")
            os.remove(report)
        with datasource.open_dataset(file) as dataset:
            cc = dataset.chan_count
            print("Available Channels: ")
            print(cc)

        if (alg == 'kmeans'):
            file = file
            dbic = list(range(1, cc + 1, 1))  # input channels
            dboc = [cc + 1]  # output channel
            print(dboc)
            mask = []  # process entire image
            numclus = [5]  # requested number of clusters
            seedfile = ''  #  automatically generate seeds
            maxiter = [20]  # no more than 20 iterations
            movethrs = [0.01]

            print("The file is: " + root.filename)
            ##        enableDefaultReport(prev_report)
            pcimod(file=file, pciop='add', pcival=[1, 0, 0, 0, 0, 0])
            Report.clear()
            enableDefaultReport(report)
            print("Applying K-Means Classification")
            kcluster = kclus(file, dbic, dboc, mask, numclus, seedfile,
                             maxiter, movethrs)
            print("K-Means Classification is successful")
        else:
            file = file  # input file
            dbic = list(range(1, cc + 1, 1))  # input channels
            dboc = [cc + 1]  # output channel
            print(dboc)
            mask = []  # process entire image
            numclus = [5]  # requested number of clusters
            maxclus = [7]  # at most 20 clusters
            minclus = [5]  # at least 5 clusters
            seedfile = ''  #  automatically generate seeds
            maxiter = [5]  # no more than 20 iterations
            movethrs = [0.01]
            siggen = "NO"  # no signature generation
            samprm = [5]
            stdv = [10.0]
            lump = [1.0]
            maxpair = [5]  # no more than 5 cluster center pairs
            # clumped in one iteration
            backval = []  # no background value
            nsam = []  # default number of samples

            print("The file is: " + root.filename)
            ##        enableDefaultReport(prev_report)
            pcimod(file=file, pciop='add', pcival=[1, 0, 0, 0, 0, 0])
            Report.clear()
            enableDefaultReport(report)
            print("Applying Iso-cluster Classification")
            isoclus( file, dbic, dboc, mask, numclus, maxclus, minclus, seedfile, maxiter,\
                     movethrs, siggen, samprm, stdv, lump, maxpair, backval, nsam )
            print("Iso-Cluster Classification is successful")

        pcimod(file=file, pciop='add', pcival=[1])
        ##        root.status.set("Running fmo")
        print("Applying MOD filter")
        kfmo = fmo(file=file, dbic=[cc + 1], dboc=[cc + 2])
        print("MOD filter is successfully applied")
        pcimod(file=file, pciop='add', pcival=[1])
        ##        root.status.set("Running sieve")
        print("Applying SIEVE filter")
        ksieve = sieve(file=file, dbic=[cc + 1], dboc=[cc + 3], sthresh=[32])
        print("SIEVE filter is successfully applied")
        ##      Split and insert directory name
        split_file = file.split("/")
        split_file.insert(-1, "Result")
        join_result = "\\".join(split_file)
        ##        Split by .
        dot_result = join_result.split(".")
        ##        print(dot_result)
        ##        print("dot result")
        ##        join .shp at last
        shp_result = dot_result[0] + ".shp"

        current_file_path, ext = os.path.splitext(str(file))
        current_file = current_file_path.split("/")[-1]
        ##        print(current_file)
        ##        print("current file")
        ##      Delete previously generated shapefiles
        prev_files = glob.glob(os.getcwd() + "\\Data\\Result\\" + "*")
        ##        print(prev_files)
        ##        print("previous files")
        for prev_file in prev_files:
            prev_file_name, format = os.path.splitext(
                str(os.path.basename(prev_file)))
            ##            print(prev_file_name)
            ##            print(" prev file names")
            if (current_file in prev_file_name):
                print("DELETING: " + str(prev_file))
                os.remove(prev_file)
                print("Successfully DELETED: " + str(prev_file))

##        if(os.path.exists("../Data/Result/"+dot_result[0])):
##            print("inside if ......")
##            os.remove(shp_result)
##            print("shp is deleted...")
        print("Exporting to shapefile")
        ras2poly(fili=file,
                 dbic=[cc + 3],
                 filo=shp_result,
                 smoothv="Yes",
                 ftype="SHP",
                 foptions="")
        print("Shapefile is successfully created")
Ejemplo n.º 4
0
# Execution

qprint('Press any key to continue...')
input()

qprint('\n\n===== (>_<) Starting Execution (>_<) =====\n\n')

# KCLUS

from pci.kclus import kclus

qprintl('[1 of 5] KCLUS\tExecuting K-Means...')
kclus(
    file=dataset.name,  # Input file name
    dbic=inputChannels,  # Input channels
    dboc=[kClusChannel],  # Output channel
    numclus=[5],  # Number of output cluster classes
    maxiter=[5]  # Maximum iterations
)
updateChannelName(kClusChannel, KCLUS_RESULT)
qprintl('[1 of 5] KCLUS\tExecuting K-Means...OK \\(^o^)/')

# FMO

from pci.fmo import fmo

qprint('[2 of 5] FMO\tApplying Mode Filter...')
fmo(
    file=dataset.name,  # Input file
    dbic=[kClusChannel],  # Input channel
    dboc=[fmoChannel],  # Output channel
Ejemplo n.º 5
0
    for i in range(1, dataset.chan_count + 1):
        qprintl('  Channel {}: {}'.format(
            i, auxiliaryData.get_chan_description(i)))
else:
    qprintl('  No')

# KCLUS

# kclus: Unsupervised Classification with K-Means
from pci.kclus import kclus

qprintl('Executing K-Means...')
kclus(
    file=dataset.name,  # Input file name
    dbic=list(range(1, 7)),  # Input channels
    dboc=[7],  # Output channel
    numclus=[5],  # Number of output cluster classes
    maxiter=[5]  # Maximum iterations
)
auxiliaryData.set_chan_description('K-Means', 7)
qprintl('Executing K-Means: OK \\(^o^)/')

# FMO

# fmo: Mode Filter
from pci.fmo import fmo

qprint('Applying Mode Filter...')
fmo(
    file=dataset.name,  # Input file
    dbic=[7],  # Input channel
Ejemplo n.º 6
0
def classification(image):

    # Set timer
    start = time.time()

    # Define output file name
    outputFile = "GH_classPolygons.shp"
    output = outputFolder + "\\" + outputFile

    # get image statistics to extract channel number
    print "Detecting current channels..."
    with ds.open_dataset(image) as dataset:
        chansCount = dataset.chan_count
    print str(chansCount) + " channels detected"
    print ""

    # Whipe previously created channels (only use if you want a fresh clean input file and don't need previously created channels)
    chansDel = range(7, chansCount + 1)
    if chansCount > 6:  # Adjust depending on image bands
        pcimod(file=image, pciop='del', pcival=chansDel)
        print str(len(chansDel)) + " previously created channels deleted"

    # Whipe previously created shape files in output folder
    files = glob.glob(outputFolder + "\\" + '*')
    for f in files:
        os.remove(f)
    print "Previous output files deleted"
    print ""

    # Count input channels and create input channel list
    with ds.open_dataset(image) as dataset:
        inputChansCount = dataset.chan_count
    inputChans = range(1, inputChansCount + 1)
    print inputChans

    # Add 3 channels to the image for storing algorithm output
    print "Adding three 8-bit channels to image..."
    pcimod(file=image, pciop='add', pcival=[3, 0, 0, 0, 0, 0])
    print "Three 8-bit channels added"
    print ""

    # Run k-means cluster algorithm
    classesNumber = [8]  # define number of classes
    iterations = [10]  # define number iterations
    moveThresh = [0.01]  # define move threshhold
    print "Running unsupervized k-means classification..."
    print "Creating " + str(classesNumber) + " classes, applying " + str(
        iterations) + " iterations at a move-threshhold of " + str(moveThresh)
    kclus(file=image,
          dbic=inputChans,
          dboc=[7],
          numclus=classesNumber,
          maxiter=iterations,
          movethrs=moveThresh)
    flag1 = time.time()
    print "Classification complete! Time ellapsed: " + str(flag1 -
                                                           start) + " seconds"
    print ""

    # Run mode filter
    print "Running Mode Filter..."
    fmo(file=image, dbic=[7], dboc=[8], thinline="OFF", flsz=[3, 3])
    flag2 = time.time()
    print "Filtering complete! Time ellapsed: " + str(flag2 -
                                                      start) + " seconds"
    print ""

    # Run sieve
    print "Applying sieve..."
    sieve(file=image, dbic=[8], dboc=[9], sthresh=[16])
    flag3 = time.time()
    print "Sieve complete! Time ellapsed: " + str(flag3 - start) + " seconds"
    print ""

    # Create vector ploygons and export as shape file
    print "Creating polygons..."
    ras2poly(fili=image, dbic=[9], filo=output, ftype="SHP")
    flag4 = time.time()
    print "Polygons created! Time ellapsed: " + str(flag4 - start) + " seconds"
    print ""

    print "Exporting as shape file..."

    end = time.time()
    print "Total time ellapsed: " + str(end - start) + " seconds"