Ejemplo n.º 1
0
    def policy(obs):
        nonlocal expected_next_state
        nonlocal plan

        state = obs.literals
        goal = obs.goal
        objects = obs.objects

        if False:  #len(plan) > 0:
            expected_next_state = get_next_expected_state(state, plan[0])
            return plan.pop(0)

        # Add possible actions to state
        full_state = set(state)
        full_state.update(action_space.all_ground_literals(obs))

        # Create problem file
        fname = '/tmp/problem.pddl'
        PDDLProblemParser.create_pddl_file(fname, objects, full_state,
                                           "myproblem", domain_name, goal)
        # Get plan
        print("goal:", goal)
        try:
            plan = planner.get_plan(fname, use_cache=False)
            print("plan:", plan)
        except NoPlanFoundException:
            # Default to random
            print("no plan found")
            return action_space.sample(obs)
        # Updated expected next state
        expected_next_state = get_next_expected_state(state, plan[0])
        return plan.pop(0)
Ejemplo n.º 2
0
def sample_problem(domain, problem_dir, problem_outfile):

    blocks, block_state = sample_blocks(domain,
                                        num_blocks=np.random.randint(30, 61))

    goal = create_goal(domain,
                       blocks,
                       pile_heights=np.random.randint(3,
                                                      7,
                                                      size=np.random.randint(
                                                          1, 3)))

    objects = blocks
    initial_state = block_state

    filepath = os.path.join(PDDLDIR, problem_dir, problem_outfile)

    PDDLProblemParser.create_pddl_file(
        filepath,
        objects=objects,
        initial_state=initial_state,
        problem_name="manyblocksnopiles",
        domain_name=domain.domain_name,
        goal=goal,
        fast_downward_order=True,
    )
    print("Wrote out to {}.".format(filepath))
Ejemplo n.º 3
0
 def __call__(self,
              domain,
              state,
              horizon=np.inf,
              timeout=10,
              return_files=False):
     act_predicates = [domain.predicates[a] for a in list(domain.actions)]
     act_space = LiteralSpace(
         act_predicates, type_to_parent_types=domain.type_to_parent_types)
     dom_file = tempfile.NamedTemporaryFile(delete=False).name
     prob_file = tempfile.NamedTemporaryFile(delete=False).name
     domain.write(dom_file)
     lits = set(state.literals)
     if not domain.operators_as_actions:
         lits |= set(act_space.all_ground_literals(state, valid_only=False))
     PDDLProblemParser.create_pddl_file(prob_file,
                                        state.objects,
                                        lits,
                                        "myproblem",
                                        domain.domain_name,
                                        state.goal,
                                        fast_downward_order=True)
     pddl_plan = self.plan_from_pddl(dom_file,
                                     prob_file,
                                     horizon=horizon,
                                     timeout=timeout,
                                     remove_files=(not return_files))
     plan = [
         self._plan_step_to_action(domain, state, act_predicates, plan_step)
         for plan_step in pddl_plan
     ]
     if return_files:
         return plan, dom_file, prob_file
     return plan
Ejemplo n.º 4
0
 def __call__(self, domain, state, timeout):
     act_preds = [domain.predicates[a] for a in list(domain.actions)]
     act_space = LiteralSpace(
         act_preds, type_to_parent_types=domain.type_to_parent_types)
     dom_file = tempfile.NamedTemporaryFile(delete=False).name
     prob_file = tempfile.NamedTemporaryFile(delete=False).name
     domain.write(dom_file)
     lits = set(state.literals)
     if not domain.operators_as_actions:
         lits |= set(act_space.all_ground_literals(state, valid_only=False))
     PDDLProblemParser.create_pddl_file(
         prob_file, state.objects, lits, "myproblem",
         domain.domain_name, state.goal, fast_downward_order=True)
     cmd_str = self._get_cmd_str(dom_file, prob_file, timeout)
     start_time = time.time()
     output = subprocess.getoutput(cmd_str)
     self._cleanup()
     os.remove(dom_file)
     os.remove(prob_file)
     if time.time()-start_time > timeout:
         raise PlanningTimeout("Planning timed out!")
     pddl_plan = self._output_to_plan(output)
     plan = [self._plan_step_to_action(domain, state, act_preds, plan_step)
             for plan_step in pddl_plan]
     return plan
Ejemplo n.º 5
0
def sample_problem(domain,
                   problem_dir,
                   problem_outfile,
                   num_locs,
                   min_extra_papers=1,
                   max_extra_papers=10):
    loc_type = domain.types['loc']
    paper_type = domain.types['paper']
    at = domain.predicates['at']
    isHomeBase = domain.predicates['ishomebase']
    wantsPaper = domain.predicates['wantspaper']
    unpacked = domain.predicates['unpacked']
    satisfied = domain.predicates['satisfied']

    # Create objects and state
    state = set()
    objects = set()
    home_loc = None
    target_locs = []
    # Add locations
    for loc_idx in range(num_locs):
        loc = loc_type(f"loc-{loc_idx}")
        objects.add(loc)
        # home
        if loc_idx == 0:
            state.add(isHomeBase(loc))
            state.add(at(loc))
            home_loc = loc
        # wants paper
        else:
            state.add(wantsPaper(loc))
            target_locs.append(loc)
    # Add papers
    num_papers = num_locs + np.random.randint(min_extra_papers,
                                              max_extra_papers + 1)
    for paper_idx in range(num_papers):
        paper = paper_type(f"paper-{paper_idx}")
        objects.add(paper)
        state.add(unpacked(paper))

    # Create goal
    goal_lits = [satisfied(loc) for loc in target_locs]
    goal = LiteralConjunction(goal_lits)

    filepath = os.path.join(PDDLDIR, problem_dir, problem_outfile)

    PDDLProblemParser.create_pddl_file(
        filepath,
        objects=objects,
        initial_state=state,
        problem_name="newspaper",
        domain_name=domain.domain_name,
        goal=goal,
        fast_downward_order=True,
    )
    print("Wrote out to {}.".format(filepath))
Ejemplo n.º 6
0
    def _create_problem_pddl(self, state, goal, prefix):
        fname = "/tmp/{}_problem_{}.pddl".format(prefix,
                                                 random.randint(0, 9999999))
        objects = state.objects
        all_action_lits = self._action_space.all_ground_literals(state)
        initial_state = state.literals | all_action_lits
        problem_name = "{}_problem".format(prefix)
        domain_name = self._planning_module.domain_name
        PDDLProblemParser.create_pddl_file(fname, objects, initial_state,
                                           problem_name, domain_name, goal)

        return fname
Ejemplo n.º 7
0
def sample_problem(domain,
                   problem_dir,
                   problem_outfile,
                   num_rows=6,
                   num_cols=6,
                   num_people=1,
                   num_selected_people=1,
                   randomize_person_loc=False,
                   randomize_robot_start=True,
                   wall_probability=0.2,
                   randomize_walls=False,
                   randomize_hospital_loc=False,
                   num_chickens=0):

    all_objects, initial_state, people, hospital_loc = sample_state(
        domain,
        num_rows=num_rows,
        num_cols=num_cols,
        num_people=num_people,
        randomize_person_loc=randomize_person_loc,
        randomize_robot_start=randomize_robot_start,
        wall_probability=wall_probability,
        randomize_walls=randomize_walls,
        randomize_hospital_loc=randomize_hospital_loc,
        num_chickens=num_chickens,
    )

    if isinstance(num_selected_people, tuple):
        lo, hi = num_selected_people
        num_selected_people = np.random.randint(lo, hi + 1)

    goal = create_goal(domain,
                       people,
                       hospital_loc,
                       num_selected_people=num_selected_people)

    filedir = os.path.join(PDDLDIR, problem_dir)
    os.makedirs(filedir, exist_ok=True)
    filepath = os.path.join(filedir, problem_outfile)

    PDDLProblemParser.create_pddl_file(
        filepath,
        objects=all_objects,
        initial_state=initial_state,
        problem_name=DOMAIN_NAME,
        domain_name=domain.domain_name,
        goal=goal,
        fast_downward_order=True,
    )
    print("Wrote out to {}.".format(filepath))
    problem_id = (frozenset(initial_state), goal)
    return problem_id, filepath
Ejemplo n.º 8
0
def sample_problem(domain,
                   problem_dir,
                   problem_outfile,
                   min_num_piles=30,
                   max_num_piles=50,
                   min_num_piles_goal=1,
                   max_num_piles_goal=2,
                   max_num_blocks=1000):

    while True:
        blocks, block_state = sample_blocks(
            domain,
            pile_heights=np.random.randint(1,
                                           3,
                                           size=np.random.randint(
                                               min_num_piles,
                                               max_num_piles + 1)),
        )
        if len(blocks) <= max_num_blocks:
            break

    while True:
        goal = create_goal(domain,
                           blocks,
                           pile_heights=np.random.randint(
                               2,
                               4,
                               size=np.random.randint(min_num_piles_goal,
                                                      max_num_piles_goal + 1)))

        if not goal.holds(block_state):
            break

    objects = blocks
    initial_state = block_state

    filepath = os.path.join(PDDLDIR, problem_dir, problem_outfile)

    PDDLProblemParser.create_pddl_file(
        filepath,
        objects=objects,
        initial_state=initial_state,
        problem_name="manyquantifiedblocks",
        domain_name=domain.domain_name,
        goal=goal,
        fast_downward_order=True,
    )
    print("Wrote out to {}.".format(filepath))
Ejemplo n.º 9
0
def sample_problem(domain,
                   problem_dir,
                   problem_outfile,
                   seen_problems,
                   min_num_piles=30,
                   max_num_piles=50,
                   min_num_piles_goal=1,
                   max_num_piles_goal=2):

    while True:
        blocks, block_state = sample_blocks(
            domain,
            pile_heights=np.random.randint(1,
                                           3,
                                           size=np.random.randint(
                                               min_num_piles,
                                               max_num_piles + 1)),
        )

        goal = create_goal(domain,
                           blocks,
                           pile_heights=np.random.randint(
                               2,
                               4,
                               size=np.random.randint(min_num_piles_goal,
                                                      max_num_piles_goal + 1)))

        objects = frozenset(blocks)
        initial_state = frozenset(block_state)

        if (initial_state, objects, goal) in seen_problems:
            continue

        seen_problems.add((initial_state, objects, goal))
        break

    filepath = os.path.join(PDDLDIR, problem_dir, problem_outfile)

    PDDLProblemParser.create_pddl_file(
        filepath,
        objects=objects,
        initial_state=initial_state,
        problem_name="generatedblocks",
        domain_name=domain.domain_name,
        goal=goal,
        fast_downward_order=True,
    )
    print("Wrote out to {}.".format(filepath))
Ejemplo n.º 10
0
 def _compute_all_ground_literals(self, state):
     """Call FastDownward's instantiator.
     """
     # Generate temporary files to hand over to instantiator.
     assert state.objects == self._initial_state.objects
     dom_file = tempfile.NamedTemporaryFile(delete=False).name
     prob_file = tempfile.NamedTemporaryFile(delete=False).name
     # d_desc, domain_fname = tempfile.mkstemp(dir=TMP_PDDL_DIR, text=True)
     self.domain.write(dom_file)
     # p_desc, problem_fname = tempfile.mkstemp(dir=TMP_PDDL_DIR, text=True)
     # with os.fdopen(p_desc, "w") as f:
     PDDLProblemParser.create_pddl_file(
         file_or_filepath=prob_file,
         objects=state.objects - set(self.domain.constants),
         initial_state=self._initial_state.literals,
         problem_name="myproblem",
         domain_name=self.domain.domain_name,
         goal=state.goal,
         fast_downward_order=True)
     # PDDLProblemParser.create_pddl_file(
     #     prob_file, objects, lits, "myproblem",
     #     domain.domain_name, state.goal, fast_downward_order=True)
     # Call instantiator.
     task = downward_open(domain_filename=dom_file, task_filename=prob_file)
     with nostdout():
         _, _, actions, _, _ = downward_explore(task)
     # Post-process to our representation.
     obj_name_to_obj = {obj.name: obj for obj in state.objects}
     all_ground_literals = set()
     for action in actions:
         name = action.name.strip().strip("()").split()
         pred_name, obj_names = name[0], name[1:]
         if len(set(obj_names)) != len(obj_names):
             continue
         pred = None
         for p in self.predicates:
             if p.name == pred_name:
                 assert pred is None
                 pred = p
                 break
         assert pred is not None
         objs = [obj_name_to_obj[obj_name] for obj_name in obj_names]
         all_ground_literals.add(pred(*objs))
     # os.close(d_desc)
     os.remove(dom_file)
     os.remove(prob_file)
     return all_ground_literals
Ejemplo n.º 11
0
def sample_problem(domain,
                   problem_dir,
                   problem_outfile,
                   min_num_piles=30,
                   max_num_piles=50,
                   min_num_piles_goal=1,
                   max_num_piles_goal=2):

    blocks, block_state = sample_blocks(
        domain,
        pile_heights=np.random.randint(1,
                                       3,
                                       size=np.random.randint(
                                           min_num_piles, max_num_piles + 1)),
    )

    goal = create_goal(domain,
                       blocks,
                       pile_heights=np.random.randint(
                           2,
                           4,
                           size=np.random.randint(min_num_piles_goal,
                                                  max_num_piles_goal + 1)))

    objects = blocks
    initial_state = block_state

    filepath = os.path.join(PDDLDIR, problem_dir, problem_outfile)

    PDDLProblemParser.create_pddl_file(
        filepath,
        objects=objects,
        initial_state=initial_state,
        problem_name="manyblockssmallpiles",
        domain_name=domain.domain_name,
        goal=goal,
        fast_downward_order=True,
    )
    print("Wrote out to {}.".format(filepath))
Ejemplo n.º 12
0
def sample_problem(domain, problem_outfile):
    feet, feet_state = sample_feet(domain)
    socks, socks_state = sample_socks(domain, num_pairs=np.random.randint(10, 21))
    shoes, shoes_state = sample_shoes(domain, num_pairs=np.random.randint(10, 21))
    places, places_state = sample_places(domain, num_places_per_type=np.random.randint(5, 11))

    objects = feet | socks | shoes | places
    initial_state = feet_state | socks_state | shoes_state | places_state
    goal = create_goal(domain, objects)

    filepath = os.path.join(PDDLDIR, "footwear", problem_outfile)

    PDDLProblemParser.create_pddl_file(
        filepath,
        objects=objects,
        initial_state=initial_state,
        problem_name="footwear",
        domain_name=domain.domain_name,
        goal=goal,
        fast_downward_order=True,
    )
    print("Wrote out to {}.".format(filepath))
Ejemplo n.º 13
0
        def policy(obs):
            nonlocal expected_next_state
            nonlocal plan

            state = obs.literals
            goal = obs.goal
            objects = obs.objects

            # Add possible actions to state
            full_state = set(state)
            full_state.update(self._action_space.all_ground_literals(obs))

            # Create problem file
            file = tempfile.NamedTemporaryFile(delete=False)
            fname = file.name
            PDDLProblemParser.create_pddl_file(fname, objects, full_state,
                                               "myproblem", self.domain_name,
                                               goal)
            # Get plan
            plan = self._ff_planner.get_plan(fname, use_cache=False)
            # Updated expected next state
            expected_next_state = self._get_predicted_next_state_ops(
                obs, plan[0])
            return plan.pop(0)
Ejemplo n.º 14
0
def sample_problem(domain, problem_dir, problem_outfile, 
                   min_num_balls=201, max_num_balls=300,
                   min_num_rooms=101, max_num_rooms=200,
                   min_num_balls_goal=5, max_num_balls_goal=20):
    
    all_objects, balls, rooms, initial_state = sample_state(domain, 
        num_balls=np.random.randint(min_num_balls, max_num_balls+1),
        num_rooms=np.random.randint(min_num_rooms, max_num_rooms+1),
    )
    goal = create_goal(domain, balls, rooms, 
        num_balls=np.random.randint(min_num_balls_goal, max_num_balls_goal+1))

    filepath = os.path.join(PDDLDIR, problem_dir, problem_outfile)

    PDDLProblemParser.create_pddl_file(
        filepath,
        objects=all_objects,
        initial_state=initial_state,
        problem_name="manygripper",
        domain_name=domain.domain_name,
        goal=goal,
        fast_downward_order=True,
    )
    print("Wrote out to {}.".format(filepath))
Ejemplo n.º 15
0
def create_problem(grid, domain, problem_dir, problem_outfile):
    
    # Create location objects
    loc_type = domain.types['loc']
    objects = set()
    grid_locs = np.empty(grid.shape, dtype=object)
    for r in range(grid.shape[0]):
        for c in range(grid.shape[1]):
            obj = loc_type(f'r{r}_c{c}')
            objects.add(obj)
            grid_locs[r, c] = obj

    initial_state = set()

    # Add at, isWater, isHill, isGoal
    at = domain.predicates['at']
    isWater = domain.predicates['iswater']
    isHill = domain.predicates['ishill']
    isGoal = domain.predicates['isgoal']
    for r in range(grid.shape[0]):
        for c in range(grid.shape[1]):
            obj = grid_locs[r, c]
            if grid[r, c] == I:
                initial_state.add(at(obj))
            elif grid[r, c] == W:
                initial_state.add(isWater(obj))
            elif grid[r, c] == H:
                initial_state.add(isHill(obj))
            elif grid[r, c] == G:
                initial_state.add(isGoal(obj))

    # Add adjacent
    adjacent = domain.predicates['adjacent']

    def get_neighbors(r, c):
        for dr, dc in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
            nr = r + dr
            nc = c + dc
            if 0 <= nr < grid.shape[0] and 0 <= nc < grid.shape[1]:
                yield (nr, nc)

    for r in range(grid.shape[0]):
        for c in range(grid.shape[1]):    
            obj = grid_locs[r, c]
            for (nr, nc) in get_neighbors(r, c):
                nobj = grid_locs[nr, nc]
                initial_state.add(adjacent(obj, nobj))

    # Add onTrail
    onTrail = domain.predicates['ontrail']

    # Get the path
    path = []
    r, c = np.argwhere(grid == I)[0]
    while True:
        path.append((r, c))
        if grid[r, c] == G:
            break
        for (nr, nc) in get_neighbors(r, c):
            if (nr, nc) in path:
                continue
            if grid[nr, nc] in [P, G, H]:
                r, c = nr, nc
                break
        else:
            raise Exception("Should not happen")

    for (r, c), (nr, nc) in zip(path[:-1], path[1:]):
        obj = grid_locs[r, c]
        nobj = grid_locs[nr, nc]
        initial_state.add(onTrail(obj, nobj))

    # Goal
    goal_rcs = np.argwhere(grid == G)
    assert len(goal_rcs) == 1
    goal_r, goal_c = goal_rcs[0]
    goal_obj = grid_locs[goal_r, goal_c]
    goal = LiteralConjunction([at(goal_obj)])

    filepath = os.path.join(PDDLDIR, problem_dir, problem_outfile)

    PDDLProblemParser.create_pddl_file(
        filepath,
        objects=objects,
        initial_state=initial_state,
        problem_name="hiking",
        domain_name=domain.domain_name,
        goal=goal,
        fast_downward_order=True,
    )
    print("Wrote out to {}.".format(filepath))
Ejemplo n.º 16
0
 def __call__(self, domain, state, timeout):
     act_preds = [domain.predicates[a] for a in list(domain.actions)]
     act_space = LiteralSpace(
         act_preds, type_to_parent_types=domain.type_to_parent_types)
     dom_file = tempfile.NamedTemporaryFile(delete=False).name
     prob_file = tempfile.NamedTemporaryFile(delete=False).name
     domain.write(dom_file)
     lits = set(state.literals)
     if not domain.operators_as_actions:
         lits |= set(act_space.all_ground_literals(state, valid_only=False))
     PDDLProblemParser.create_pddl_file(prob_file,
                                        state.objects,
                                        lits,
                                        "myproblem",
                                        domain.domain_name,
                                        state.goal,
                                        fast_downward_order=True)
     cur_objects = set()
     start_time = time.time()
     if self._force_include_goal_objects:
         # Always start off considering objects in the goal.
         for lit in state.goal.literals:
             cur_objects |= set(lit.variables)
     # Get scores once.
     object_to_score = {
         obj: self._guidance.score_object(obj, state)
         for obj in state.objects if obj not in cur_objects
     }
     # Initialize threshold.
     threshold = self._gamma
     for _ in range(self._max_iterations):
         # Find new objects by incrementally lowering threshold.
         unused_objs = sorted(list(state.objects - cur_objects))
         new_objs = set()
         while unused_objs:
             # Geometrically lower threshold.
             threshold *= self._gamma
             # See if there are any new objects.
             new_objs = {
                 o
                 for o in unused_objs if object_to_score[o] > threshold
             }
             # If there are, try planning with them.
             if new_objs:
                 break
         cur_objects |= new_objs
         # Keep only literals referencing currently considered objects.
         cur_lits = set()
         for lit in state.literals:
             if all(var in cur_objects for var in lit.variables):
                 cur_lits.add(lit)
         dummy_state = State(cur_lits, cur_objects, state.goal)
         # Try planning with only this object set.
         print("[Trying to plan with {} objects of {} total, "
               "threshold is {}...]".format(len(cur_objects),
                                            len(state.objects), threshold),
               flush=True)
         try:
             time_elapsed = time.time() - start_time
             # Get a plan from base planner & validate it.
             plan = self._planner(domain, dummy_state,
                                  timeout - time_elapsed)
             if not validate_strips_plan(domain_file=dom_file,
                                         problem_file=prob_file,
                                         plan=plan):
                 raise PlanningFailure("Invalid plan")
         except PlanningFailure:
             # Try again with more objects.
             if len(cur_objects) == len(state.objects):
                 # We already tried with all objects, give up.
                 break
             continue
         return plan
     raise PlanningFailure("Plan not found! Reached max_iterations.")
Ejemplo n.º 17
0
if __name__ == "__main__":
    cnt = 0
    for file in sorted(os.listdir(TAR_DIR)):
        sok = SokobanGame()
        boards = sok.new_board(os.path.join(TAR_DIR, file))
        for b in boards:
            domian_file = "/Users/yangchen/PycharmProjects/pddlgym/pddlgym/pddl/sokoban.pddl"
            problem_file = "/Users/yangchen/PycharmProjects/pddlgym/pddlgym/pddl/sokoban_test/task02.pddl"
            domain = PDDLDomainParser(domian_file)
            problem = PDDLProblemParser(problem_file, domain.domain_name,
                                        domain.types, domain.predicates,
                                        domain.actions, domain.constants)

            problem.objects = parse_objects(b, domain.types)
            problem.goal = parse_goal(b, domain.types, domain.predicates)
            problem.initial_state = parse_initial_state(
                b, domain.types, domain.predicates)

            with open(
                    '/Users/yangchen/PycharmProjects/pddlgym/pddlgym/pddl/sokoban/{}.pddl'
                    .format(cnt), 'w') as f:
                PDDLProblemParser.create_pddl_file(f, problem.objects,
                                                   problem.initial_state,
                                                   problem.problem_name,
                                                   problem.domain_name,
                                                   problem.goal)

            cnt += 1
            if cnt == 5:
                exit(0)
Ejemplo n.º 18
0
def sample_problem(domain, problem_dir, problem_outfile, maze_array):
    loc_type = domain.types['location']
    player_type = domain.types['player']

    at = domain.predicates['at']
    clear = domain.predicates['clear']
    move_dir_down = domain.predicates['move-dir-down']
    move_dir_left = domain.predicates['move-dir-left']
    move_dir_right = domain.predicates['move-dir-right']
    move_dir_up = domain.predicates['move-dir-up']
    oriented_down = domain.predicates['oriented-down']
    oriented_left = domain.predicates['oriented-left']
    oriented_right = domain.predicates['oriented-right']
    oriented_up = domain.predicates['oriented-up']
    is_goal = domain.predicates['is-goal']

    # Create objects and state
    state = set()
    objects = set()
    goal = None

    player = player_type("player-1")
    objects.add(player)
    state.add(
        np.random.choice(
            [oriented_down, oriented_left, oriented_right,
             oriented_up])(player))

    for r in range(len(maze_array)):
        for c in range(len(maze_array[r])):
            loc = loc_type(f"loc-{r+1}-{c+1}")
            objects.add(loc)

            if maze_array[r][c] == 0:  #empty: clear
                state.add(clear(loc))
            elif maze_array[r][c] == 1:  #blocked:
                pass
            elif maze_array[r][c] == 2:  #player init: at
                state.add(at(player, loc))
            else:  #goal: clear (should be 3)
                goal = at(player, loc)
                state.add(clear(loc))
                state.add(is_goal(loc))

    for r in range(1, len(maze_array) - 1):
        for c in range(1, len(maze_array[r]) - 1):
            if maze_array[r][c] == 1:
                continue
            if maze_array[r - 1][c] != 1:
                state.add(
                    move_dir_up(loc_type(f"loc-{r+1}-{c+1}"),
                                loc_type(f"loc-{r}-{c+1}")))
            if maze_array[r + 1][c] != 1:
                state.add(
                    move_dir_down(loc_type(f"loc-{r+1}-{c+1}"),
                                  loc_type(f"loc-{r+2}-{c+1}")))
            if maze_array[r][c - 1] != 1:
                state.add(
                    move_dir_left(loc_type(f"loc-{r+1}-{c+1}"),
                                  loc_type(f"loc-{r+1}-{c}")))
            if maze_array[r][c + 1] != 1:
                state.add(
                    move_dir_right(loc_type(f"loc-{r+1}-{c+1}"),
                                   loc_type(f"loc-{r+1}-{c+2}")))

    filepath = os.path.join(PDDLDIR, problem_dir, problem_outfile)

    PDDLProblemParser.create_pddl_file(
        filepath,
        objects=objects,
        initial_state=state,
        problem_name="maze",
        domain_name=domain.domain_name,
        goal=goal,
        fast_downward_order=True,
    )
    print("Wrote out to {}.".format(filepath))