Ejemplo n.º 1
0
def collect_scoop(args, ros_world):
    arm, _ = ACTIVE_ARMS['scoop']
    cup_name, bowl_name = get_scoop_items(ros_world)
    spoon_name = create_name(args.spoon,
                             1)  # grey_spoon | orange_spoon | green_spoon

    init_holding = get_spoon_init_holding(arm, spoon_name)
    init = [
        ('Contains', bowl_name, SUGAR),
    ]
    goal = [
        ('Contains', cup_name, SUGAR),
    ]
    skeleton = [
        ('move-arm', [arm, X, X, X]),
        ('scoop', [arm, bowl_name, X, spoon_name, X, SUGAR, X, X, X]),
        ('move-arm', [arm, X, X, X]),
        ('pour', [arm, cup_name, X, spoon_name, X, SUGAR, X, X, X]),
        ('move-arm', [arm, X, X, X]),
    ]
    constraints = PlanConstraints(skeletons=[skeleton], exact=True)

    task = Task(init=init,
                init_holding=init_holding,
                goal=goal,
                arms=[arm],
                required=[cup_name, bowl_name],
                reset_arms=True,
                use_scales=True,
                constraints=constraints)
    add_holding(task, ros_world)
    feature = get_scoop_feature(ros_world, bowl_name, spoon_name)

    return task, feature
Ejemplo n.º 2
0
def solve_current(problem,
                  constraints=PlanConstraints(),
                  unit_costs=False,
                  verbose=False,
                  **search_args):
    """
    Solves a PDDLStream problem without applying any streams
    Will fail if the problem requires stream applications
    :param problem: a PDDLStream problem
    :param constraints: PlanConstraints on the available solutions
    :param unit_costs: use unit action costs rather than numeric costs
    :param verbose: if True, this prints the result of each stream application
    :param search_args: keyword args for the search subroutine
    :return: a tuple (plan, cost, evaluations) where plan is a sequence of actions
        (or None), cost is the cost of the plan, and evaluations is init but expanded
        using stream applications
    """
    evaluations, goal_expression, domain, externals = parse_problem(
        problem, constraints=constraints, unit_costs=unit_costs)
    instantiator = Instantiator(externals, evaluations)
    process_function_queue(instantiator, evaluations, verbose=verbose)
    plan, cost = solve_finite(evaluations,
                              goal_expression,
                              domain,
                              max_cost=constraints.max_cost,
                              **search_args)
    return revert_solution(plan, cost, evaluations)
Ejemplo n.º 3
0
def examine_instantiated(problem, constraints=PlanConstraints(), unit_costs=False, unique=False, verbose=False, debug=False):
    # TODO: refactor to an analysis file
    domain_pddl, constant_map, stream_pddl, _, init, goal = problem
    stream_map = DEBUG if unique else SHARED_DEBUG # DEBUG_MODES
    problem = PDDLProblem(domain_pddl, constant_map, stream_pddl, stream_map, init, goal)

    evaluations, goal_exp, domain, externals = parse_problem(
        problem, constraints=constraints, unit_costs=unit_costs)
    assert not isinstance(domain, SimplifiedDomain)

    # store = SolutionStore(evaluations, max_time, success_cost=INF, verbose=verbose)
    # instantiator = Instantiator(externals, evaluations)
    # process_stream_queue(instantiator, store, complexity_limit=INF, verbose=verbose)
    # results = [] # TODO: extract from process_stream_queue

    #set_unique(externals)
    # domain.actions[:] = [] # TODO: only instantiate axioms
    # TODO: drop all fluents and instantiate
    # TODO: relaxed planning version of this
    results, exhausted = optimistic_process_streams(evaluations, externals, complexity_limit=INF, max_effort=None)

    evaluations = evaluations_from_stream_plan(evaluations, results, max_effort=None)
    problem = get_problem(evaluations, goal_exp, domain, unit_costs)
    task = task_from_domain_problem(domain, problem)
    with Verbose(debug):
        instantiated = instantiate_task(task)
        if instantiated is None:
            return None
        # TODO: reinstantiate actions?
        instantiated.axioms[:] = [reinstantiate_axiom(axiom) for axiom in instantiated.axioms]
        instantiated = convert_instantiated(instantiated)
    return results, instantiated
Ejemplo n.º 4
0
def collect_pour(args, ros_world):
    arm, _ = ACTIVE_ARMS['pour']
    cup_name, bowl_name = get_pour_items(ros_world)

    init = [
        ('Contains', cup_name, COFFEE),
    ]
    goal = [
        ('Contains', bowl_name, COFFEE),
    ]
    skeleton = [
        ('move-arm', [arm, X, X, X]),
        ('pick', [arm, cup_name, X, X, X, X, X]),
        ('move-arm', [arm, X, X, X]),
        ('pour', [arm, bowl_name, X, cup_name, X, COFFEE, X, X, X]),
        ('move-arm', [arm, X, X, X]),
        ('place', [arm, cup_name, X, X, X, X, X, X, X, X]),
        ('move-arm', [arm, X, X, X]),
    ]
    constraints = PlanConstraints(skeletons=[skeleton], exact=True)
    # TODO: remove required

    # TODO: ensure the robot reaches its start configuration
    task = Task(
        init=init,
        goal=goal,
        arms=[arm],
        required=[cup_name, bowl_name],  # TODO: table?
        reset_arms=True,
        empty_arms=True,
        use_scales=True,
        constraints=constraints)
    feature = get_pour_feature(ros_world, bowl_name, cup_name)

    return task, feature
Ejemplo n.º 5
0
def compute_skeleton_constraints(action_plan, bindings):
    skeleton = []
    groups = {
        arg: values
        for arg, values in bindings.items() if len(values) != 1
    }
    for name, args in action_plan:
        new_args = []
        for arg in args:
            if isinstance(arg, Object):
                new_args.append(arg)
            elif isinstance(arg, OptimisticObject):
                assert bindings.get(arg, [])
                if len(bindings[arg]) == 1:
                    new_args.append(bindings[arg][0])
                else:
                    #new_args.append(WILD)
                    new_args.append(arg)
            else:
                raise ValueError(arg)
        skeleton.append((name, new_args))
    # exact=False because we might need new actions
    return PlanConstraints(skeletons=[skeleton],
                           groups=groups,
                           exact=False,
                           max_cost=INF)
Ejemplo n.º 6
0
def compute_skeleton_constraints(opt_plan, bindings):
    skeleton = []
    groups = {
        arg: values
        for arg, values in bindings.items() if len(values) != 1
    }
    action_plan, preimage_facts = opt_plan
    for name, args in action_plan:
        new_args = []
        for arg in args:
            if isinstance(arg, Object):
                new_args.append(arg)
            elif isinstance(arg, OptimisticObject):
                new_args.append(WILD)
                # TODO: might cause some strange effects on continuous_tamp -p blocked
                #assert bindings.get(arg, [])
                #if len(bindings[arg]) == 1:
                #    new_args.append(bindings[arg][0])
                #else:
                #    #new_args.append(WILD)
                #    new_args.append(arg)
            else:
                raise ValueError(arg)
        skeleton.append((name, new_args))
    # exact=False because we might need new actions
    return PlanConstraints(skeletons=[skeleton],
                           groups=groups,
                           exact=False,
                           max_cost=INF)
Ejemplo n.º 7
0
def examine_instantiated(problem,
                         constraints=PlanConstraints(),
                         unit_costs=False,
                         max_time=INF,
                         verbose=False,
                         **search_args):
    domain_pddl, constant_map, stream_pddl, _, init, goal = problem
    stream_map = DEBUG
    problem = PDDLProblem(domain_pddl, constant_map, stream_pddl, stream_map,
                          init, goal)

    evaluations, goal_exp, domain, externals = parse_problem(
        problem, constraints=constraints, unit_costs=unit_costs)
    store = SolutionStore(evaluations,
                          max_time,
                          success_cost=INF,
                          verbose=verbose)
    #externals = compile_fluents_as_attachments(domain, externals) #
    instantiator = Instantiator(externals, evaluations)
    process_stream_queue(instantiator,
                         store,
                         complexity_limit=INF,
                         verbose=verbose)

    #plan, cost = solve_finite(evaluations, goal_exp, domain, max_cost=max_cost, **search_args)
    debug = False
    assert not isinstance(domain, SimplifiedDomain)
    problem = get_problem(evaluations, goal_exp, domain, unit_costs)
    task = task_from_domain_problem(domain, problem)
    with Verbose(debug):
        instantiated = instantiate_task(task)
        instantiated = convert_instantiated(instantiated)
    return instantiated
Ejemplo n.º 8
0
def collect_push(args, ros_world):
    arm = LEFT_ARM
    block_name, = get_pour_items(ros_world)

    goal_pos2d = np.random.uniform(*POSE2D_RANGE)[:2]
    init = [('CanPush', block_name, goal_pos2d)]
    goal = [('InRegion', block_name, goal_pos2d)]
    skeleton = [
        ('move-arm', [arm, X, X, X]),
        ('push', [arm, block_name, X, X, X, X, X]),
        ('move-arm', [arm, X, X, X]),
    ]
    constraints = PlanConstraints(skeletons=[skeleton], exact=True)
    task = Task(init=init,
                goal=goal,
                arms=[arm],
                required=[block_name],
                reset_arms=True,
                use_scales=False,
                constraints=constraints)

    initial_pose = ros_world.perception.get_pose(block_name)
    feature = get_push_feature(ros_world, block_name, arm, initial_pose,
                               goal_pos2d)

    for goal in task.goal:
        if goal[0] == 'InRegion':
            _, block_name, goal_pos2d = goal
            draw_push_goal(ros_world, block_name, goal_pos2d)

    return task, feature
Ejemplo n.º 9
0
def solve_incremental(problem, constraints=PlanConstraints(),
                      unit_costs=False, success_cost=INF,
                      max_iterations=INF, max_time=INF,
                      start_complexity=0, complexity_step=1, max_complexity=INF,
                      verbose=False, **search_args):
    """
    Solves a PDDLStream problem by alternating between applying all possible streams and searching
    :param problem: a PDDLStream problem
    :param constraints: PlanConstraints on the set of legal solutions
    :param max_time: the maximum amount of time to apply streams
    :param max_iterations: the maximum amount of search iterations
    :param unit_costs: use unit action costs rather than numeric costs
    :param success_cost: an exclusive (strict) upper bound on plan cost to terminate
    :param start_complexity: the stream complexity on the first iteration
    :param complexity_step: the increase in the complexity limit after each iteration
    :param max_complexity: the maximum stream complexity
    :param verbose: if True, this prints the result of each stream application
    :param search_args: keyword args for the search subroutine
    :return: a tuple (plan, cost, evaluations) where plan is a sequence of actions
        (or None), cost is the cost of the plan, and evaluations is init but expanded
        using stream applications
    """
    # max_complexity = 0 => current
    # complexity_step = INF => exhaustive
    # success_cost = terminate_cost = decision_cost
    evaluations, goal_expression, domain, externals = parse_problem(
        problem, constraints=constraints, unit_costs=unit_costs)
    store = SolutionStore(evaluations, max_time, success_cost, verbose) # TODO: include other info here?
    ensure_no_fluent_streams(externals)
    if UPDATE_STATISTICS:
        load_stream_statistics(externals)
    num_iterations = num_calls = 0
    complexity_limit = start_complexity
    instantiator = Instantiator(externals, evaluations)
    num_calls += process_stream_queue(instantiator, store, complexity_limit, verbose=verbose)
    while not store.is_terminated() and (num_iterations <= max_iterations) and (complexity_limit <= max_complexity):
        num_iterations += 1
        print('Iteration: {} | Complexity: {} | Calls: {} | Evaluations: {} | Solved: {} | Cost: {} | Time: {:.3f}'.format(
            num_iterations, complexity_limit, num_calls, len(evaluations),
            store.has_solution(), store.best_cost, store.elapsed_time()))
        plan, cost = solve_finite(evaluations, goal_expression, domain,
                                  max_cost=min(store.best_cost, constraints.max_cost), **search_args)
        if is_plan(plan):
            store.add_plan(plan, cost)
        if not instantiator:
            break
        if complexity_step is None:
            # TODO: option to select the next k-smallest complexities
            complexity_limit = instantiator.min_complexity()
        else:
            complexity_limit += complexity_step
        num_calls += process_stream_queue(instantiator, store, complexity_limit, verbose=verbose)
    #retrace_stream_plan(store, domain, goal_expression)
    #print('Final queue size: {}'.format(len(instantiator)))
    if UPDATE_STATISTICS:
        write_stream_statistics(externals, verbose)
    return store.extract_solution()
Ejemplo n.º 10
0
def main(max_time=20):
    """
    Creates and solves the 2D motion planning problem.
    """
    parser = create_parser()
    args = parser.parse_args()
    print('Arguments:', args)

    obstacles = [create_box((.5, .5), (.2, .2))]
    regions = {
        'env': create_box((.5, .5), (1, 1)),
        'green': create_box((.8, .8), (.4, .4)),
    }

    goal = 'green'
    if goal not in regions:
        goal = ARRAY([1, 1])

    max_distance = 0.25  # 0.2 | 0.25 | 0.5 | 1.0
    problem, samples, roadmap = create_problem(goal,
                                               obstacles,
                                               regions,
                                               max_distance=max_distance)
    print('Initial:', str_from_object(problem.init))
    print('Goal:', str_from_object(problem.goal))
    constraints = PlanConstraints(max_cost=1.25)  # max_cost=INF)

    with Profiler(field='tottime', num=10):
        solution = solve_incremental(problem,
                                     constraints=constraints,
                                     unit_costs=args.unit,
                                     success_cost=0,
                                     max_time=max_time,
                                     verbose=False)

    print_solution(solution)
    plan, cost, evaluations = solution
    #viewer = draw_environment(obstacles, regions)
    #for sample in samples:
    #    viewer.draw_point(sample)
    #user_input('Continue?')

    # TODO: use the same viewer here
    draw_roadmap(roadmap, obstacles, regions)  # TODO: do this in realtime
    user_input('Continue?')

    if plan is None:
        return
    segments = [args for name, args in plan]
    draw_solution(segments, obstacles, regions)
    user_input('Finish?')
Ejemplo n.º 11
0
 def __init__(self,
              init=[],
              goal=[],
              init_holding={},
              arms=[LEFT_ARM],
              required=[],
              stackable=[],
              graspable=[],
              pushable=[],
              stirrable=[],
              can_scoop=[],
              scoopable=[],
              pressable=[],
              pourable=[],
              can_contain=[],
              use_kitchen=False,
              use_scales=False,
              reset_arms=False,
              empty_arms=False,
              reset_items=False,
              constraints=PlanConstraints()):
     self.init = init
     self.goal = goal
     self.arms = arms
     self.init_holding = init_holding
     self.required = set(required)
     self.stackable = [TABLE] + list(stackable)
     self.graspable = ['greenblock', 'cup'] + list(
         graspable)  # 'spoon', 'stirrer'
     self.pushable = ['purpleblock'] + list(pushable)
     self.stirrable = ['spoon', 'stirrer'] + list(stirrable)
     self.can_scoop = ['spoon'] + list(can_scoop)
     self.scoopable = ['bowl'] + list(scoopable)
     self.pressable = ['button'] + list(pressable)
     self.can_contain = ['bowl'] + list(can_contain)  # 'cup'
     self.pourable = ['cup', 'spoon'] + list(pourable)  # 'bowl'
     self.use_kitchen = use_kitchen
     self.use_scales = use_scales
     self.reset_arms = reset_arms
     self.empty_arms = select_values(empty_arms, self.arms)
     self.reset_items = select_values(reset_items, self.graspable)
     self.constraints = constraints
Ejemplo n.º 12
0
def solve_exhaustive(problem,
                     constraints=PlanConstraints(),
                     unit_costs=False,
                     max_time=300,
                     verbose=False,
                     **search_args):
    """
    Solves a PDDLStream problem by applying all possible streams and searching once
    Requires a finite max_time when infinitely many stream instances
    :param problem: a PDDLStream problem
    :param constraints: PlanConstraints on the available solutions
    :param unit_costs: use unit action costs rather than numeric costs
    :param max_time: the maximum amount of time to apply streams
    :param verbose: if True, this prints the result of each stream application
    :param search_args: keyword args for the search subroutine
    :return: a tuple (plan, cost, evaluations) where plan is a sequence of actions
        (or None), cost is the cost of the plan, and evaluations is init but expanded
        using stream applications
    """
    start_time = time.time()
    evaluations, goal_expression, domain, externals = parse_problem(
        problem, constraints=constraints, unit_costs=unit_costs)
    ensure_no_fluent_streams(externals)
    if UPDATE_STATISTICS:
        load_stream_statistics(externals)
    instantiator = Instantiator(externals, evaluations)
    while instantiator.stream_queue and (elapsed_time(start_time) < max_time):
        process_instance(instantiator,
                         evaluations,
                         instantiator.pop_stream(),
                         verbose=verbose)
    process_function_queue(instantiator, evaluations, verbose=verbose)
    plan, cost = solve_finite(evaluations,
                              goal_expression,
                              domain,
                              max_cost=constraints.max_cost,
                              **search_args)
    if UPDATE_STATISTICS:
        write_stream_statistics(externals, verbose)
    return revert_solution(plan, cost, evaluations)
Ejemplo n.º 13
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('-a',
                        '--algorithm',
                        default='focused',
                        help='Specifies the algorithm')
    parser.add_argument('-g',
                        '--gurobi',
                        action='store_true',
                        help='Uses gurobi')
    parser.add_argument('-o',
                        '--optimal',
                        action='store_true',
                        help='Runs in an anytime mode')
    parser.add_argument('-s',
                        '--skeleton',
                        action='store_true',
                        help='Enforces skeleton plan constraints')

    # TODO: test if placed in the same region
    defer_fn = defer_shared  # never_defer | defer_unique | defer_shared
    tamp_problem, args = initialize(parser)
    stream_info = {
        's-region':
        StreamInfo(defer_fn=defer_fn),
        's-grasp':
        StreamInfo(defer_fn=defer_fn),
        's-ik':
        StreamInfo(defer_fn=get_defer_all_unbound(
            inputs='?g')),  # defer_fn | defer_unbound
        's-motion':
        StreamInfo(defer_fn=get_defer_any_unbound()),
        't-cfree':
        StreamInfo(defer_fn=get_defer_any_unbound(), eager=False,
                   negate=True),  # defer_fn |  defer_unbound
        't-region':
        StreamInfo(eager=False, p_success=0),  # bound_fn is None
        'dist':
        FunctionInfo(defer_fn=get_defer_any_unbound(),
                     opt_fn=lambda q1, q2: MOVE_COST),
        'gurobi-cfree':
        StreamInfo(eager=False, negate=True),
        #'gurobi': OptimizerInfo(p_success=0),
        #'rrt': OptimizerInfo(p_success=0),
    }
    hierarchy = [
        #ABSTRIPSLayer(pos_pre=['atconf']), #, horizon=1),
    ]

    skeletons = [TIGHT_SKELETON] if args.skeleton else None
    assert implies(args.skeleton, args.problem == 'tight')
    max_cost = INF  # 8*MOVE_COST
    constraints = PlanConstraints(
        skeletons=skeletons,
        #skeletons=[],
        #skeletons=[skeleton, []],
        exact=True,
        max_cost=max_cost)
    #replan_actions = set()
    replan_actions = {'move', 'pick', 'place'}

    pddlstream_problem = pddlstream_from_tamp(tamp_problem,
                                              collisions=not args.cfree,
                                              use_stream=not args.gurobi,
                                              use_optimizer=args.gurobi)
    dump_pddlstream(pddlstream_problem)
    pr = cProfile.Profile()
    pr.enable()
    success_cost = 0 if args.optimal else INF
    planner = 'max-astar'
    #planner = 'ff-wastar1'
    if args.algorithm == 'focused':
        solver = solve_focused  # solve_focused | solve_serialized
        solution = solver(
            pddlstream_problem,
            constraints=constraints,
            stream_info=stream_info,
            replan_actions=replan_actions,
            planner=planner,
            max_planner_time=10,
            hierarchy=hierarchy,
            debug=False,
            max_time=args.max_time,
            max_iterations=INF,
            verbose=True,
            unit_costs=args.unit,
            success_cost=success_cost,
            unit_efforts=True,
            effort_weight=1,
            search_sample_ratio=1,
            #max_skeletons=None, bind=True,
            visualize=args.visualize)
    elif args.algorithm == 'incremental':
        solution = solve_incremental(pddlstream_problem,
                                     constraints=constraints,
                                     complexity_step=2,
                                     planner=planner,
                                     hierarchy=hierarchy,
                                     unit_costs=args.unit,
                                     success_cost=success_cost,
                                     max_time=args.max_time,
                                     verbose=False)
    else:
        raise ValueError(args.algorithm)

    print_solution(solution)
    plan, cost, evaluations = solution
    pr.disable()
    pstats.Stats(pr).sort_stats('cumtime').print_stats(20)
    if plan is not None:
        display_plan(tamp_problem, retime_plan(plan))
Ejemplo n.º 14
0
def solve_pddlstream(belief,
                     problem,
                     args,
                     skeleton=None,
                     replan_actions=set(),
                     max_time=INF,
                     max_memory=MAX_MEMORY,
                     max_cost=INF):
    set_cost_scale(COST_SCALE)
    reset_globals()
    stream_info = get_stream_info()
    #print(set(stream_map) - set(stream_info))
    skeletons = create_ordered_skeleton(skeleton)
    max_cost = min(max_cost, COST_BOUND)
    print('Max cost: {:.3f} | Max runtime: {:.3f}'.format(max_cost, max_time))
    constraints = PlanConstraints(skeletons=skeletons,
                                  max_cost=max_cost,
                                  exact=True)

    success_cost = 0 if args.anytime else INF
    planner = 'ff-astar' if args.anytime else 'ff-wastar2'
    search_sample_ratio = 0.5  # 0.5
    max_planner_time = 10
    # TODO: max number of samples per iteration flag
    # TODO: don't greedily expand samples with too high of a complexity if out of time

    pr = cProfile.Profile()
    pr.enable()
    saver = WorldSaver()
    sim_state = belief.sample_state()
    sim_state.assign()
    wait_for_duration(0.1)
    with LockRenderer(lock=not args.visualize):
        # TODO: option to only consider costs during local optimization
        # effort_weight = 0 if args.anytime else 1
        effort_weight = 1e-3 if args.anytime else 1
        #effort_weight = 0
        #effort_weight = None
        solution = solve_focused(
            problem,
            constraints=constraints,
            stream_info=stream_info,
            replan_actions=replan_actions,
            initial_complexity=5,
            planner=planner,
            max_planner_time=max_planner_time,
            unit_costs=args.unit,
            success_cost=success_cost,
            max_time=max_time,
            max_memory=max_memory,
            verbose=True,
            debug=False,
            unit_efforts=True,
            effort_weight=effort_weight,
            max_effort=INF,
            # bind=True, max_skeletons=None,
            search_sample_ratio=search_sample_ratio)
        saver.restore()

    # print([(s.cost, s.time) for s in SOLUTIONS])
    # print(SOLUTIONS)
    print_solution(solution)
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(25)  # cumtime | tottime
    return solution
Ejemplo n.º 15
0
def main():
    # TODO: side grasps (horizontal gripper, one finger, forklift)
    parser = create_parser()
    parser.add_argument('-g',
                        '--gurobi',
                        action='store_true',
                        help='Uses gurobi')
    parser.add_argument('-o',
                        '--optimal',
                        action='store_true',
                        help='Runs in an anytime mode')
    parser.add_argument('-s',
                        '--skeleton',
                        action='store_true',
                        help='Enforces skeleton plan constraints')
    tamp_problem, args = initialize(parser)

    # TODO: test if placed in the same region
    defer_fn = defer_shared  # never_defer | defer_unique | defer_shared
    stream_info = {
        's-region':
        StreamInfo(defer_fn=defer_fn),
        's-grasp':
        StreamInfo(defer_fn=defer_fn),
        's-ik':
        StreamInfo(defer_fn=get_defer_all_unbound(
            inputs='?g')),  # defer_fn | defer_unbound
        's-motion':
        StreamInfo(defer_fn=get_defer_any_unbound()),
        't-cfree':
        StreamInfo(defer_fn=get_defer_any_unbound(),
                   eager=False,
                   verbose=False),  # defer_fn |  defer_unbound
        't-region':
        StreamInfo(eager=True, p_success=0),  # bound_fn is None
        'dist':
        FunctionInfo(eager=False,
                     defer_fn=get_defer_any_unbound(),
                     opt_fn=lambda q1, q2: MOVE_COST),
        'gurobi-cfree':
        StreamInfo(
            eager=False, negate=True
        ),  # TODO: AttributeError: 'tuple' object has no attribute 'instance'
        #'gurobi': OptimizerInfo(p_success=0),
        #'rrt': OptimizerInfo(p_success=0),
    }
    #stream_info = {}

    hierarchy = [
        #ABSTRIPSLayer(pos_pre=['atconf']), #, horizon=1),
    ]

    skeletons = [TIGHT_SKELETON] if args.skeleton else None
    assert implies(args.skeleton, args.problem == 'tight')
    max_cost = INF  # 8*MOVE_COST
    constraints = PlanConstraints(
        skeletons=skeletons,
        #skeletons=[],
        #skeletons=[skeleton, []],
        exact=True,
        max_cost=max_cost)
    replan_actions = set()
    #replan_actions = {'move', 'pick', 'place'}

    pddlstream_problem = pddlstream_from_tamp(tamp_problem,
                                              collisions=not args.cfree,
                                              use_stream=not args.gurobi,
                                              use_optimizer=args.gurobi)
    dump_pddlstream(pddlstream_problem)

    success_cost = 0 if args.optimal else INF
    #planner = 'dijkstra'
    planner = 'max-astar'
    #planner = 'ff-wastar1'
    #effort_weight = 1.
    effort_weight = 1. / get_cost_scale()
    #effort_weight = None

    with Profiler(field='cumtime', num=20):
        solution = solve(pddlstream_problem,
                         algorithm=args.algorithm,
                         constraints=constraints,
                         stream_info=stream_info,
                         replan_actions=replan_actions,
                         planner=planner,
                         max_planner_time=10,
                         hierarchy=hierarchy,
                         max_time=args.max_time,
                         max_iterations=INF,
                         debug=False,
                         verbose=True,
                         unit_costs=args.unit,
                         success_cost=success_cost,
                         unit_efforts=True,
                         effort_weight=effort_weight,
                         search_sample_ratio=1,
                         visualize=args.visualize)  # TODO: solve_serialized

    print_solution(solution)
    plan, cost, evaluations = solution
    if plan is not None:
        display_plan(tamp_problem, retime_plan(plan))
Ejemplo n.º 16
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('-p',
                        '--problem',
                        default='blocked',
                        help='The name of the problem to solve')
    parser.add_argument('-a',
                        '--algorithm',
                        default='focused',
                        help='Specifies the algorithm')
    parser.add_argument('-c',
                        '--cfree',
                        action='store_true',
                        help='Disables collisions')
    parser.add_argument('-d',
                        '--deterministic',
                        action='store_true',
                        help='Uses a deterministic sampler')
    parser.add_argument('-g',
                        '--gurobi',
                        action='store_true',
                        help='Uses gurobi')
    parser.add_argument('-n',
                        '--number',
                        default=2,
                        type=int,
                        help='The number of blocks')
    parser.add_argument('-o',
                        '--optimal',
                        action='store_true',
                        help='Runs in an anytime mode')
    parser.add_argument('-s',
                        '--skeleton',
                        action='store_true',
                        help='Enforces skeleton plan constraints')
    parser.add_argument('-t',
                        '--max_time',
                        default=30,
                        type=int,
                        help='The max time')
    parser.add_argument('-u',
                        '--unit',
                        action='store_true',
                        help='Uses unit costs')
    parser.add_argument('-v',
                        '--visualize',
                        action='store_true',
                        help='Visualizes graphs')
    args = parser.parse_args()
    print('Arguments:', args)

    np.set_printoptions(precision=2)
    if args.deterministic:
        random.seed(seed=0)
        np.random.seed(seed=0)
    print('Random seed:', get_random_seed())

    problem_from_name = {fn.__name__: fn for fn in PROBLEMS}
    if args.problem not in problem_from_name:
        raise ValueError(args.problem)
    print('Problem:', args.problem)
    problem_fn = problem_from_name[args.problem]
    tamp_problem = problem_fn(args.number)
    print(tamp_problem)

    action_info = {
        #'move': ActionInfo(terminal=True),
        #'pick': ActionInfo(terminal=True),
        #'place': ActionInfo(terminal=True),
    }
    stream_info = {
        't-region': StreamInfo(eager=False, p_success=0),  # bound_fn is None
        't-cfree': StreamInfo(eager=False, negate=True),
        'distance': FunctionInfo(opt_fn=lambda q1, q2: MOVE_COST),
        'gurobi-cfree': StreamInfo(eager=False, negate=True),
        #'gurobi': OptimizerInfo(p_success=0),
        #'rrt': OptimizerInfo(p_success=0),
    }
    hierarchy = [
        #ABSTRIPSLayer(pos_pre=['atconf']), #, horizon=1),
    ]

    skeletons = [TIGHT_SKELETON] if args.skeleton else None
    max_cost = INF  # 8*MOVE_COST
    constraints = PlanConstraints(
        skeletons=skeletons,
        #skeletons=[],
        #skeletons=[skeleton, []],
        exact=True,
        max_cost=max_cost)

    pddlstream_problem = pddlstream_from_tamp(tamp_problem,
                                              collisions=not args.cfree,
                                              use_stream=not args.gurobi,
                                              use_optimizer=args.gurobi)
    print('Initial:', sorted_str_from_list(pddlstream_problem.init))
    print('Goal:', str_from_object(pddlstream_problem.goal))
    pr = cProfile.Profile()
    pr.enable()
    success_cost = 0 if args.optimal else INF
    planner = 'max-astar'
    #planner = 'ff-wastar1'
    if args.algorithm == 'focused':
        solution = solve_focused(
            pddlstream_problem,
            constraints=constraints,
            action_info=action_info,
            stream_info=stream_info,
            planner=planner,
            max_planner_time=10,
            hierarchy=hierarchy,
            debug=False,
            max_time=args.max_time,
            max_iterations=INF,
            verbose=True,
            unit_costs=args.unit,
            success_cost=success_cost,
            unit_efforts=False,
            effort_weight=0,
            search_sample_ratio=1,
            #max_skeletons=None, bind=True,
            visualize=args.visualize)
    elif args.algorithm == 'incremental':
        solution = solve_incremental(pddlstream_problem,
                                     constraints=constraints,
                                     complexity_step=2,
                                     planner=planner,
                                     hierarchy=hierarchy,
                                     unit_costs=args.unit,
                                     success_cost=success_cost,
                                     max_time=args.max_time,
                                     verbose=False)
    else:
        raise ValueError(args.algorithm)

    print_solution(solution)
    plan, cost, evaluations = solution
    pr.disable()
    pstats.Stats(pr).sort_stats('cumtime').print_stats(20)
    if plan is not None:
        display_plan(tamp_problem, retime_plan(plan))
Ejemplo n.º 17
0
def main(use_synthesizers=False):
    parser = argparse.ArgumentParser()
    parser.add_argument('-p', '--problem', default='blocked', help='The name of the problem to solve')
    parser.add_argument('-a', '--algorithm', default='focused', help='Specifies the algorithm')
    parser.add_argument('-c', '--cfree', action='store_true', help='Disables collisions')
    parser.add_argument('-d', '--deterministic', action='store_true', help='Uses a deterministic sampler')
    parser.add_argument('-u', '--unit', action='store_true', help='Uses unit costs')
    parser.add_argument('-o', '--optimal', action='store_true', help='Runs in an anytime mode')
    parser.add_argument('-t', '--max_time', default=20, type=int, help='The max time')
    args = parser.parse_args()
    print('Arguments:', args)
    print('Synthesizers: {}'.format(use_synthesizers))

    np.set_printoptions(precision=2)
    if args.deterministic:
        seed = 0
        np.random.seed(seed)
    print('Random seed:', get_random_seed())
    if use_synthesizers and not has_gurobi():
        use_synthesizers = False
        print('Warning! use_synthesizers=True requires gurobipy. Setting use_synthesizers=False.')

    if args.problem not in PROBLEMS:
        raise ValueError(args.problem)
    print('Problem:', args.problem)
    problem_fn = PROBLEMS[args.problem]
    tamp_problem = problem_fn()
    print(tamp_problem)

    action_info = {
        #'move': ActionInfo(terminal=True),
        #'pick': ActionInfo(terminal=True),
        #'place': ActionInfo(terminal=True),
    }
    stream_info = {
        't-region': StreamInfo(eager=True, p_success=0), # bound_fn is None
        't-cfree': StreamInfo(eager=False, negate=True),
        'distance': FunctionInfo(opt_fn=lambda q1, q2: MOVE_COST),
        #'gurobi': OptimizerInfo(p_success=0),
        #'rrt': OptimizerInfo(p_success=0),
    }
    hierarchy = [
        #ABSTRIPSLayer(pos_pre=['atconf']), #, horizon=1),
    ]

    synthesizers = [
        #StreamSynthesizer('cfree-motion', {'s-motion': 1, 'trajcollision': 0},
        #                  gen_fn=from_fn(cfree_motion_fn)),
        StreamSynthesizer('optimize', {'s-region': 1, 's-ik': 1,
                                       'posecollision': 0, 't-cfree': 0, 'distance': 0},
                          gen_fn=from_fn(get_optimize_fn(tamp_problem.regions))),
    ] if use_synthesizers else []


    skeleton = [
        ('move', ['?q0', WILD, '?q1']),
        ('pick', ['b0', '?p0', '?q1']),
        ('move', ['?q1', WILD, '?q2']),
        ('place', ['b0', '?p1', '?q2']),
    ]
    constraints = PlanConstraints(#skeletons=None,
                                  #skeletons=[],
                                  #skeletons=[skeleton],
                                  #skeletons=[skeleton, []],
                                  #exact=False,
                                  max_cost=INF)

    pddlstream_problem = pddlstream_from_tamp(tamp_problem, collisions=not args.cfree)
    print('Initial:', str_from_object(pddlstream_problem.init))
    print('Goal:', str_from_object(pddlstream_problem.goal))
    pr = cProfile.Profile()
    pr.enable()
    success_cost = 0 if args.optimal else INF
    if args.algorithm == 'focused':
        solution = solve_focused(pddlstream_problem, constraints=constraints,
                                 action_info=action_info, stream_info=stream_info, synthesizers=synthesizers,
                                 planner='ff-wastar1', max_planner_time=10, hierarchy=hierarchy, debug=False,
                                 max_time=args.max_time, max_iterations=INF, verbose=True,
                                 unit_costs=args.unit, success_cost=success_cost,
                                 unit_efforts=False, effort_weight=0,
                                 search_sample_ratio=0,
                                 #max_skeletons=None,
                                 visualize=False)
    elif args.algorithm == 'incremental':
        solution = solve_incremental(pddlstream_problem, constraints=constraints,
                                     complexity_step=2, hierarchy=hierarchy,
                                     unit_costs=args.unit, success_cost=success_cost,
                                     max_time=args.max_time, verbose=False)
    else:
        raise ValueError(args.algorithm)

    print_solution(solution)
    plan, cost, evaluations = solution
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)
    if plan is not None:
        display_plan(tamp_problem, plan)
Ejemplo n.º 18
0
def solve(problem, algorithm=DEFAULT_ALGORITHM, constraints=PlanConstraints(),
          stream_info={}, replan_actions=set(),
          unit_costs=False, success_cost=INF,
          max_time=INF, max_iterations=INF, max_memory=INF,
          initial_complexity=0, complexity_step=1, max_complexity=INF,
          max_skeletons=INF, search_sample_ratio=1, max_failures=0,
          unit_efforts=False, max_effort=INF, effort_weight=None, reorder=True,
          #temp_dir=TEMP_DIR, clean=False, debug=False, hierarchy=[],
          #planner=DEFAULT_PLANNER, max_planner_time=DEFAULT_MAX_TIME, max_cost=INF, debug=False
          visualize=False, verbose=True, **search_kwargs):
    """
    Solves a PDDLStream problem generically using one of the available algorithms
    :param problem: a PDDLStream problem
    :param algorithm: a PDDLStream algorithm name
    :param constraints: PlanConstraints on the set of legal solutions
    :param stream_info: a dictionary from stream name to StreamInfo altering how individual streams are handled
    :param replan_actions: the actions declared to induce replanning for the purpose of deferred stream evaluation

    :param unit_costs: use unit action costs rather than numeric costs
    :param success_cost: the exclusive (strict) upper bound on plan cost to successfully terminate
    :param max_time: the maximum runtime
    :param max_iterations: the maximum number of search iterations
    :param max_memory: the maximum amount of memory

    :param initial_complexity: the initial stream complexity limit
    :param complexity_step: the increase in the stream complexity limit per iteration
    :param max_complexity: the maximum stream complexity limit

    :param max_skeletons: the maximum number of plan skeletons (max_skeletons=None indicates not adaptive)
    :param search_sample_ratio: the desired ratio of sample time / search time when max_skeletons!=None
    :param max_failures: the maximum number of stream failures before switching phases when max_skeletons=None

    :param unit_efforts: use unit stream efforts rather than estimated numeric efforts
    :param max_effort: the maximum amount of stream effort
    :param effort_weight: a multiplier for stream effort compared to action costs
    :param reorder: if True, reorder stream plans to minimize the expected sampling overhead

    :param visualize: if True, draw the constraint network and stream plan as a graphviz file
    :param verbose: if True, print the result of each stream application
    :param search_kwargs: keyword args for the search subroutine

    :return: a tuple (plan, cost, evaluations) where plan is a sequence of actions
        (or None), cost is the cost of the plan (INF if no plan), and evaluations is init expanded
        using stream applications
    """

    # TODO: print the arguments using locals()
    # TODO: could instead make common arguments kwargs but then they could have different default values
    # TODO: portfolios of PDDLStream algorithms
    if algorithm == 'incremental':
        return solve_incremental(
            problem=problem, constraints=constraints,
            unit_costs=unit_costs, success_cost=success_cost,
            max_iterations=max_iterations, max_time=max_time, max_memory=max_memory,
            initial_complexity=initial_complexity, complexity_step=complexity_step, max_complexity=max_complexity,
            verbose=verbose, **search_kwargs)

    # if algorithm == 'abstract_focused': # meta_focused | meta_focused
    #     return solve_focused(
    #         problem, constraints=constraints,
    #         stream_info=stream_info, replan_actions=replan_actions,
    #         unit_costs=unit_costs, success_cost=success_cost,
    #         max_time=max_time, max_iterations=max_iterations, max_memory=max_memory,
    #         initial_complexity=initial_complexity, complexity_step=complexity_step, #max_complexity=max_complexity,
    #         max_skeletons=max_skeletons, search_sample_ratio=search_sample_ratio,
    #         bind=bind, max_failures=max_failures,
    #         unit_efforts=unit_efforts, max_effort=max_effort, effort_weight=effort_weight, reorder=reorder,
    #         visualize=visualize, verbose=verbose, **search_kwargs)

    fail_fast = (max_failures < INF)
    if algorithm == 'focused':
        return solve_focused_original(
            problem, constraints=constraints,
            stream_info=stream_info, replan_actions=replan_actions,
            unit_costs=unit_costs, success_cost=success_cost,
            max_time=max_time, max_iterations=max_iterations, max_memory=max_memory,
            initial_complexity=initial_complexity, complexity_step=complexity_step, max_complexity=max_complexity,
            #max_skeletons=max_skeletons, search_sample_ratio=search_sample_ratio,
            fail_fast=fail_fast, # bind=bind, max_failures=max_failures,
            unit_efforts=unit_efforts, max_effort=max_effort, effort_weight=effort_weight, reorder=reorder,
            visualize=visualize, verbose=verbose, **search_kwargs)

    if algorithm == 'binding':
        return solve_binding(
            problem, constraints=constraints,
            stream_info=stream_info, replan_actions=replan_actions,
            unit_costs=unit_costs, success_cost=success_cost,
            max_time=max_time, max_iterations=max_iterations, max_memory=max_memory,
            initial_complexity=initial_complexity, complexity_step=complexity_step, max_complexity=max_complexity,
            #max_skeletons=max_skeletons, search_sample_ratio=search_sample_ratio,
            fail_fast=fail_fast, # bind=bind, max_failures=max_failures,
            unit_efforts=unit_efforts, max_effort=max_effort, effort_weight=effort_weight, reorder=reorder,
            visualize=visualize, verbose=verbose, **search_kwargs)

    if algorithm == 'adaptive':
        return solve_adaptive(
            problem, constraints=constraints,
            stream_info=stream_info, replan_actions=replan_actions,
            unit_costs=unit_costs, success_cost=success_cost,
            max_time=max_time, max_iterations=max_iterations, max_memory=max_memory,
            initial_complexity=initial_complexity, complexity_step=complexity_step, max_complexity=max_complexity,
            max_skeletons=max_skeletons, search_sample_ratio=search_sample_ratio,
            #bind=bind, max_failures=max_failures,
            unit_efforts=unit_efforts, max_effort=max_effort, effort_weight=effort_weight, reorder=reorder,
            visualize=visualize, verbose=verbose, **search_kwargs)
    raise NotImplementedError(algorithm)
Ejemplo n.º 19
0
def solve_incremental(problem,
                      constraints=PlanConstraints(),
                      unit_costs=False,
                      success_cost=INF,
                      max_iterations=INF,
                      max_time=INF,
                      max_memory=INF,
                      initial_complexity=0,
                      complexity_step=1,
                      max_complexity=INF,
                      verbose=False,
                      **search_kwargs):
    """
    Solves a PDDLStream problem by alternating between applying all possible streams and searching
    :param problem: a PDDLStream problem
    :param constraints: PlanConstraints on the set of legal solutions

    :param unit_costs: use unit action costs rather than numeric costs
    :param success_cost: the exclusive (strict) upper bound on plan cost to successfully terminate

    :param max_time: the maximum runtime
    :param max_iterations: the maximum number of search iterations
    :param max_memory: the maximum amount of memory

    :param initial_complexity: the initial stream complexity limit
    :param complexity_step: the increase in the stream complexity limit per iteration
    :param max_complexity: the maximum stream complexity limit

    :param verbose: if True, print the result of each stream application
    :param search_kwargs: keyword args for the search subroutine

    :return: a tuple (plan, cost, evaluations) where plan is a sequence of actions
        (or None), cost is the cost of the plan (INF if no plan), and evaluations is init expanded
        using stream applications
    """
    # max_complexity = 0 => current
    # complexity_step = INF => exhaustive
    # success_cost = terminate_cost = decision_cost
    # TODO: warning if optimizers are present
    evaluations, goal_expression, domain, externals = parse_problem(
        problem, constraints=constraints, unit_costs=unit_costs)
    store = SolutionStore(
        evaluations, max_time, success_cost, verbose,
        max_memory=max_memory)  # TODO: include other info here?
    if UPDATE_STATISTICS:
        load_stream_statistics(externals)
    static_externals = compile_fluents_as_attachments(domain, externals)
    num_iterations = num_calls = 0
    complexity_limit = initial_complexity
    instantiator = Instantiator(static_externals, evaluations)
    num_calls += process_stream_queue(instantiator,
                                      store,
                                      complexity_limit,
                                      verbose=verbose)
    while not store.is_terminated() and (num_iterations < max_iterations) and (
            complexity_limit <= max_complexity):
        num_iterations += 1
        print(
            'Iteration: {} | Complexity: {} | Calls: {} | Evaluations: {} | Solved: {} | Cost: {:.3f} | '
            'Search Time: {:.3f} | Sample Time: {:.3f} | Time: {:.3f}'.format(
                num_iterations, complexity_limit, num_calls, len(evaluations),
                store.has_solution(), store.best_cost, store.search_time,
                store.sample_time, store.elapsed_time()))
        plan, cost = solve_finite(evaluations,
                                  goal_expression,
                                  domain,
                                  max_cost=min(store.best_cost,
                                               constraints.max_cost),
                                  **search_kwargs)
        if is_plan(plan):
            store.add_plan(plan, cost)
        if not instantiator:
            break
        if complexity_step is None:
            # TODO: option to select the next k-smallest complexities
            complexity_limit = instantiator.min_complexity()
        else:
            complexity_limit += complexity_step
        num_calls += process_stream_queue(instantiator,
                                          store,
                                          complexity_limit,
                                          verbose=verbose)
    #retrace_stream_plan(store, domain, goal_expression)
    #print('Final queue size: {}'.format(len(instantiator)))

    summary = store.export_summary()
    summary.update({
        'iterations': num_iterations,
        'complexity': complexity_limit,
    })
    print('Summary: {}'.format(str_from_object(
        summary, ndigits=3)))  # TODO: return the summary

    if UPDATE_STATISTICS:
        write_stream_statistics(externals, verbose)
    return store.extract_solution()
Ejemplo n.º 20
0
def collect_stir(world, num_beads=100):
    arm = LEFT_ARM
    # TODO: randomize geometries for stirrer
    spoon_name = create_name(
        'grey_spoon', 1)  # green_spoon | grey_spoon | orange_spoon | stirrer
    bowl_name = create_name('whitebowl', 1)
    scale_name = create_name('onyx_scale', 1)
    item_ranges = {
        spoon_name:
        InitialRanges(
            width_range=(1., 1.),
            height_range=(1., 1.),
            mass_range=(1., 1.),
            pose2d_range=([0.3, 0.5, -np.pi / 2], [0.3, 0.5, -np.pi / 2]),
            surface=TABLE_NAME,
        ),
        bowl_name:
        InitialRanges(
            width_range=(0.75, 1.25),
            height_range=(0.75, 1.25),
            mass_range=(1., 1.),
            pose2d_range=([0.5, -0.05, -np.pi], [0.6, 0.05,
                                                 np.pi]),  # x, y, theta
            surface=scale_name,
        ),
    }
    # TODO: make a sandbox on the table to contain the beads

    ##################################################

    #alpha = 0.75
    alpha = 1
    bead_colors = [
        (1, 0, 0, alpha),
        (0, 0, 1, alpha),
    ]

    beads_fraction = random.uniform(0.75, 1.25)
    print('Beads fraction:', beads_fraction)
    bead_radius = sample_norm(mu=0.006, sigma=0.001, lower=0.004)  # 0.007
    print('Bead radius:', bead_radius)

    # TODO: check collisions/feasibility when sampling
    # TODO: grasps on the blue cup seem off for some reason...
    with ClientSaver(world.client):
        #dump_body(world.robot)
        world.perception.add_surface('sandbox', TABLE_POSE)
        world.perception.add_surface(scale_name, TABLE_POSE)
        create_table_bodies(world, item_ranges)
        #gripper = create_gripper(world.robot, LEFT_ARM)
        #set_point(gripper, (1, 0, 1))
        #wait_for_user()
        bowl_body = world.get_body(bowl_name)
        update_world(world, target_body=bowl_body)
        init_holding = hold_item(world, arm, spoon_name)
        if init_holding is None:
            return INFEASIBLE
        parameters_from_name = randomize_dynamics(
            world)  # TODO: parameters_from_name['bead']

        _, (d, h) = approximate_as_cylinder(bowl_body)
        bowl_area = np.pi * (d / 2.)**2
        print('Bowl area:', bowl_area)
        bead_area = np.pi * bead_radius**2
        print('Bead area:', bead_area)
        num_beads = int(np.ceil(beads_fraction * bowl_area / bead_area))
        print('Num beads:', num_beads)
        num_per_color = int(num_beads / len(bead_colors))

        # TODO: randomize bead physics
        beads_per_color = [
            fill_with_beads(
                world, bowl_name,
                create_beads(num_beads,
                             bead_radius,
                             uniform_color=color,
                             parameters={})) for color in bead_colors
        ]
        world.initial_beads.update(
            {bead: bowl_body
             for beads in beads_per_color for bead in beads})
        if any(len(beads) != num_per_color for beads in beads_per_color):
            return INFEASIBLE
        #wait_for_user()

    init = [('Contains', bowl_name, COFFEE)]
    goal = [('Mixed', bowl_name)]
    skeleton = [
        ('move-arm', [arm, X, X, X]),
        ('stir', [arm, bowl_name, X, spoon_name, X, X, X, X]),
        #('move-arm', [arm, X, X, X]),
    ]
    constraints = PlanConstraints(skeletons=[skeleton], exact=True)
    task = Task(init=init,
                goal=goal,
                arms=[arm],
                init_holding=init_holding,
                reset_arms=False,
                constraints=constraints)  # Reset arm to clear the scene
    # TODO: constrain the plan skeleton within the task

    feature = get_stir_feature(world, bowl_name, spoon_name)

    ##################################################

    # table_body = world.get_body(TABLE_NAME)
    # dump_body(table_body)
    # joint = 0
    # p.enableJointForceTorqueSensor(table_body, joint, enableSensor=1, physicsClientId=world.client)
    # stabilize(world)
    # reaction_force = get_joint_reaction_force(table_body, joint)
    # print(np.array(reaction_force[:3])/ GRAVITY)

    perception = world.perception
    initial_pose = perception.get_pose(bowl_name)
    bowl_body = perception.get_body(bowl_name)
    scale_body = perception.get_body(scale_name)
    with ClientSaver(world.client):
        initial_distance = compute_dispersion(bowl_body, beads_per_color)
        initial_mass = read_mass(scale_body)
        print(initial_mass)

    def score_fn(plan):
        assert plan is not None
        with ClientSaver(world.client):
            rgb_image = take_image(world, bowl_body, beads_per_color)
            values = score_image(rgb_image, bead_colors, beads_per_color)

        final_pose = perception.get_pose(bowl_name)
        point_distance = get_distance(point_from_pose(initial_pose),
                                      point_from_pose(final_pose))  #, norm=2)
        quat_distance = quat_angle_between(quat_from_pose(initial_pose),
                                           quat_from_pose(final_pose))
        print('Translation: {:.5f} m | Rotation: {:.5f} rads'.format(
            point_distance, quat_distance))

        with ClientSaver(world.client):
            all_beads = list(flatten(beads_per_color))
            bowl_beads = get_contained_beads(bowl_body, all_beads)
            fraction_bowl = float(
                len(bowl_beads)) / len(all_beads) if all_beads else 0
        print('In Bowl: {}'.format(fraction_bowl))

        with ClientSaver(world.client):
            final_dispersion = compute_dispersion(bowl_body, beads_per_color)
        print('Initial Dispersion: {:.3f} | Final Dispersion {:.3f}'.format(
            initial_distance, final_dispersion))

        score = {
            'bowl_translation': point_distance,
            'bowl_rotation': quat_distance,
            'fraction_in_bowl': fraction_bowl,
            'initial_dispersion': initial_distance,
            'final_dispersion': final_dispersion,
            'num_beads': len(all_beads),  # Beads per color
            DYNAMICS: parameters_from_name,
        }
        # TODO: include time required for stirring
        # TODO: change in dispersion

        #wait_for_user()
        #_, args = find_unique(lambda a: a[0] == 'stir', plan)
        #control = args[-1]
        return score

    return task, feature, score_fn
Ejemplo n.º 21
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('-a', '--algorithm', default='focused', help='Specifies the algorithm')
    parser.add_argument('-s', '--skeleton', action='store_true', help='Enforces skeleton plan constraints')

    tamp_problem, args = initialize(parser)

    colors = dict(zip(sorted(tamp_problem.initial.block_poses.keys()), COLORS))
    viewer = ContinuousTMPViewer(SUCTION_HEIGHT, tamp_problem.regions, title='Continuous TAMP')
    draw_state(viewer, tamp_problem.initial, colors)

    [robot] = tamp_problem.initial.robot_confs
    blocks = sorted(tamp_problem.initial.block_poses)
    regions = sorted(set(tamp_problem.regions) - {GROUND_NAME})
    print(robot)
    print(blocks)
    print(regions)
    print(tamp_problem)

    domain_pddl = read(get_file_path(__file__, 'domain.pddl'))
    stream_pddl = read(get_file_path(__file__, 'stream.pddl'))
    constant_map = {}
    stream_map = DEBUG # TODO: reuse same streams

    stream_info = {
        't-region': StreamInfo(eager=False, p_success=0),  # bound_fn is None
    }

    streams_from_problem = {}
    for order in permutations(blocks):
        for region in regions: # Objects could also have separate goals
            print(SEPARATOR)
            print('Block order:', order)
            print('Goal region:', region)
            #tamp_problem = dual(n_blocks=args.number, goal_regions=[region])
            tamp_problem.goal_regions.update({block: region for block in order})

            init, goal = create_problem(tamp_problem)
            problem = PDDLProblem(domain_pddl, constant_map, stream_pddl, stream_map, init, goal)
            dump_pddlstream(problem)

            skeleton = create_skeleton(robot, order, home=tamp_problem.goal_conf is not None)
            print(skeleton)
            skeletons = [skeleton]
            #skeletons = None
            constraints = PlanConstraints(skeletons=skeletons, exact=True)

            solution = solve_focused(problem, constraints=constraints, stream_info=stream_info,
                                     planner='max-astar', max_planner_time=10, debug=False,
                                     max_time=args.max_time, verbose=True,
                                     unit_costs=True, unit_efforts=True, effort_weight=1)
            print_solution(solution)
            plan, cost, evaluations = solution
            assert plan is not None

            # TODO: params not sufficient if no output stream or output not in plan
            streams = set()
            for name, params in plan:
                for param in params:
                    value = get_stream_value(param)
                    if isinstance(value, StreamValue):
                        # TODO: propagate recursively
                        streams.add((value.stream, value.inputs))
            streams_from_problem[order, region] = streams
            #print(streams)
            #user_input()

    print(SEPARATOR)
    dump_statistics()

    print(SEPARATOR)
    best_problems, best_p = None, -INF
    for problems in combinations(streams_from_problem, r=2): # Make r a parameter
        stream_plans = [streams_from_problem[problem] for problem in problems]
        intersection = set.intersection(*stream_plans)
        p = p_disjunction(stream_plans, STATS_PER_STREAM)
        assert 0 <= p <= 1
        print('Problems: {} | Intersection: {} | p={:.3f}'.format(problems, len(intersection), p)) #, intersection)
        if p > best_p:
            best_problems, best_p = problems, p

    print('\nBest: {} (p={:.3f})'.format(best_problems, best_p))
Ejemplo n.º 22
0
def plan_actions(world,
                 use_constraints=False,
                 unit_costs=True,
                 max_time=300,
                 verbose=True,
                 **kwargs):
    # TODO: return multiple grasps instead of one
    pr = cProfile.Profile()
    pr.enable()
    with ClientSaver(world.client):
        # TODO: be careful about the table distance
        table_pose = get_pose(world.get_body(world.get_table()))
        torso_pose = get_link_pose(
            world.robot, link_from_name(world.robot, 'torso_lift_link'))
        torso_in_table = multiply(invert(table_pose), torso_pose)
        # Torso wrt table: [-0.6, 0.0, 0.33]
        print('Torso wrt table:',
              np.array(point_from_pose(torso_in_table)).round(3).tolist())
        #wait_for_interrupt()
        problem = get_pddlstream(world, **kwargs)
        p_success = 1e-2
        eager = True
        stream_info = {
            'ControlPoseCollision': FunctionInfo(p_success=p_success,
                                                 eager=eager),
            'ControlConfCollision': FunctionInfo(p_success=p_success,
                                                 eager=eager),
            'PosePoseCollision': FunctionInfo(p_success=p_success,
                                              eager=eager),
            'ConfConfCollision': FunctionInfo(p_success=p_success,
                                              eager=eager),
            'test-reachable': StreamInfo(p_success=0, eager=True),
            # TODO: these should automatically be last...
            'sample-motion': StreamInfo(p_success=1, overhead=100),
        }
        # TODO: RuntimeError: Preimage fact ('order', n0, t0) is not achievable!
        constraints = world.task.constraints if use_constraints else PlanConstraints(
        )
        solution = solve_focused(
            problem,
            planner='ff-wastar1',
            max_time=max_time,
            unit_costs=unit_costs,
            unit_efforts=True,
            effort_weight=1,
            stream_info=stream_info,
            # TODO: bug when max_skeletons=None and effort_weight != None
            max_skeletons=None,
            bind=True,
            max_failures=0,
            search_sample_ratio=0,
            constraints=constraints,
            verbose=verbose,
            debug=False)
        #solution = solve_incremental(problem, unit_costs=unit_costs, verbose=True)
        print_solution(solution)
        plan, cost, evaluations = solution
    pr.disable()
    if verbose:
        pstats.Stats(pr).sort_stats('tottime').print_stats(
            10)  # cumtime | tottime
    return plan
Ejemplo n.º 23
0
def collect_pour(world,
                 bowl_type=None,
                 cup_type=None,
                 randomize=True,
                 **kwargs):
    arm = LEFT_ARM
    bowl_type = random.choice(POUR_BOWLS) if bowl_type is None else bowl_type
    cup_type = random.choice(POUR_CUPS) if cup_type is None else cup_type

    # TODO: could directly randomize base_diameter and top_diameter
    scale = int(randomize)
    cup_name = create_name(cup_type, 1)
    bowl_name = create_name(bowl_type, 1)
    item_ranges = {
        cup_name:
        InitialRanges(
            width_range=interval(extent=0.2 *
                                 scale),  # the cups are already fairly small
            #height_range=(0.9, 1.1),
            height_range=(1.0, 1.2),  # Difficult to grasp when this shrinks
            mass_range=interval(extent=0.2 * scale),
            pose2d_range=([0.5, 0.3, -np.pi], [0.5, 0.3,
                                               np.pi]),  # x, y, theta
        ),
        bowl_name:
        InitialRanges(
            width_range=interval(extent=0.4 * scale),
            height_range=interval(extent=0.4 * scale),
            mass_range=interval(extent=0.4 * scale),
            pose2d_range=([0.5, 0.0, -np.pi], [0.5, 0.0,
                                               np.pi]),  # x, y, theta
        ),
    }
    if 'item_ranges' in kwargs:
        for item in kwargs['item_ranges']:
            item_ranges[item] = kwargs['item_ranges'][item]

    #dump_ranges(POUR_CUPS, item_ranges[cup_name])
    #dump_ranges(POUR_BOWLS, item_ranges[bowl_name])
    #for name, limits in item_ranges.items():
    #    lower, upper = aabb_from_points(read_obj(get_body_obj(name)))
    #    extents = upper - lower
    #    print(name, 'width', (extents[0]*np.array(limits.width_range)).tolist())
    #    print(name, 'height', (extents[2]*np.array(limits.height_range)).tolist())

    # TODO: check collisions/feasibility when sampling
    cup_fraction = random.uniform(0.75, 1.0)
    print('Cup fraction:', cup_fraction)
    bowl_fraction = random.uniform(1.0, 1.0)
    print('Bowl fraction:', bowl_fraction)
    bead_radius = sample_norm(mu=0.006, sigma=0.001 * scale, lower=0.004)
    print('Bead radius:', bead_radius)
    num_beads = 100

    with ClientSaver(world.client):
        create_table_bodies(world, item_ranges, randomize=randomize)
        bowl_body = world.get_body(bowl_name)
        cup_body = world.get_body(cup_name)
        update_world(world, bowl_body)
        if body_pair_collision(cup_body, bowl_body):
            # TODO: automatically try all pairs of bodies
            return INFEASIBLE
        if not has_grasp(world, cup_name):
            return INFEASIBLE
        # TODO: flatten and only store bowl vs cup
        parameters_from_name = randomize_dynamics(world, randomize=randomize)
        parameters_from_name['bead'] = sample_bead_parameters(
        )  # bead restitution is the most important
        with LockRenderer():
            all_beads = create_beads(num_beads,
                                     bead_radius,
                                     parameters=parameters_from_name['bead'])
        bowl_beads = fill_with_beads(world,
                                     bowl_name,
                                     all_beads,
                                     reset_contained=True,
                                     height_fraction=bowl_fraction)
        init_beads = fill_with_beads(world,
                                     cup_name,
                                     bowl_beads,
                                     reset_contained=False,
                                     height_fraction=cup_fraction)
        #wait_for_user()
        init_mass = sum(map(get_mass, init_beads))
        print('Init beads: {} | Init mass: {:.3f}'.format(
            len(init_beads), init_mass))
        if len(init_beads) < MIN_BEADS:
            return INFEASIBLE
        world.initial_beads.update({bead: cup_body for bead in init_beads})

    latent = {
        'num_beads': len(init_beads),
        'total_mass': init_mass,
        'bead_radius': bead_radius,
        DYNAMICS: parameters_from_name,
    }

    init = [('Contains', cup_name, COFFEE)]
    goal = [('Contains', bowl_name, COFFEE)]
    skeleton = [
        ('move-arm', [arm, X, X, X]),
        ('pick', [arm, cup_name, X, X, X, X, X]),
        ('move-arm', [arm, X, X, X]),
        ('pour', [arm, bowl_name, X, cup_name, X, COFFEE, X, X, X]),
    ]
    constraints = PlanConstraints(skeletons=[skeleton], exact=True)
    task = Task(init=init, goal=goal, arms=[arm],
                constraints=constraints)  #, init_holding=init_holding)

    ##################################################

    feature = get_pour_feature(world, bowl_name, cup_name)
    #feature['ranges'] = POUR_FEATURE_RANGES
    initial_pose = world.get_pose(bowl_name)

    def score_fn(plan):
        assert plan is not None
        final_pose = world.get_pose(bowl_name)
        point_distance = get_distance(point_from_pose(initial_pose),
                                      point_from_pose(final_pose))  #, norm=2)
        quat_distance = quat_angle_between(quat_from_pose(initial_pose),
                                           quat_from_pose(final_pose))
        print('Translation: {:.5f} m | Rotation: {:.5f} rads'.format(
            point_distance, quat_distance))

        with ClientSaver(world.client):
            # TODO: lift the bowl up (with particles around) to prevent scale detections
            final_bowl_beads = get_contained_beads(bowl_body, init_beads)
            fraction_bowl = safe_ratio(len(final_bowl_beads),
                                       len(init_beads),
                                       undefined=0)
            mass_in_bowl = sum(map(get_mass, final_bowl_beads))
            final_cup_beads = get_contained_beads(cup_body, init_beads)
            fraction_cup = safe_ratio(len(final_cup_beads),
                                      len(init_beads),
                                      undefined=0)
            mass_in_cup = sum(map(get_mass, final_cup_beads))
        print('In Bowl: {} | In Cup: {}'.format(fraction_bowl, fraction_cup))

        score = {
            # Displacements
            'bowl_translation': point_distance,
            'bowl_rotation': quat_distance,
            # Masses
            'mass_in_bowl': mass_in_bowl,
            'mass_in_cup': mass_in_cup,
            # Counts
            'bowl_beads': len(final_bowl_beads),
            'cup_beads': len(final_cup_beads),
            # Fractions
            'fraction_in_bowl': fraction_bowl,
            'fraction_in_cup': fraction_cup,
        }
        score.update(latent)
        # TODO: store the cup path length to bias towards shorter paths

        #_, args = find_unique(lambda a: a[0] == 'pour', plan)
        #control = args[-1]
        #feature = control['feature']
        #parameter = control['parameter']
        return score

    return task, feature, score_fn
Ejemplo n.º 24
0
def solve_focused(problem, constraints=PlanConstraints(),
                  stream_info={}, action_info={}, synthesizers=[],
                  max_time=INF, max_iterations=INF, max_skeletons=INF,
                  unit_costs=False, success_cost=INF,
                  complexity_step=1,
                  unit_efforts=False, max_effort=INF, effort_weight=None,
                  reorder=True, search_sample_ratio=0,
                  visualize=False, verbose=True, **search_kwargs):
    """
    Solves a PDDLStream problem by first hypothesizing stream outputs and then determining whether they exist
    :param problem: a PDDLStream problem
    :param constraints: PlanConstraints on the set of legal solutions
    :param stream_info: a dictionary from stream name to StreamInfo altering how individual streams are handled
    :param action_info: a dictionary from stream name to ActionInfo for planning and execution
    :param synthesizers: a list of StreamSynthesizer objects
    :param max_time: the maximum amount of time to apply streams
    :param max_iterations: the maximum number of search iterations
    :param max_iterations: the maximum number of plan skeletons to consider
    :param unit_costs: use unit action costs rather than numeric costs
    :param success_cost: an exclusive (strict) upper bound on plan cost to terminate
    :param unit_efforts: use unit stream efforts rather than estimated numeric efforts
    :param complexity_step: the increase in the effort limit after each failure
    :param max_effort: the maximum amount of effort to consider for streams
    :param effort_weight: a multiplier for stream effort compared to action costs
    :param reorder: if True, stream plans are reordered to minimize the expected sampling overhead
    :param search_sample_ratio: the desired ratio of search time / sample time
    :param visualize: if True, it draws the constraint network and stream plan as a graphviz file
    :param verbose: if True, this prints the result of each stream application
    :param search_kwargs: keyword args for the search subroutine
    :return: a tuple (plan, cost, evaluations) where plan is a sequence of actions
        (or None), cost is the cost of the plan, and evaluations is init but expanded
        using stream applications
    """
    # TODO: select whether to search or sample based on expected success rates
    # TODO: no optimizers during search with relaxed_stream_plan
    num_iterations = search_time = sample_time = eager_calls = 0
    complexity_limit = float(INITIAL_COMPLEXITY)
    eager_disabled = effort_weight is None  # No point if no stream effort biasing
    evaluations, goal_exp, domain, externals = parse_problem(
        problem, stream_info=stream_info, constraints=constraints,
        unit_costs=unit_costs, unit_efforts=unit_efforts)
    store = SolutionStore(evaluations, max_time, success_cost, verbose)
    full_action_info = get_action_info(action_info)
    load_stream_statistics(externals + synthesizers)
    if visualize and not has_pygraphviz():
        visualize = False
        print('Warning, visualize=True requires pygraphviz. Setting visualize=False')
    if visualize:
        reset_visualizations()
    streams, functions, negative = partition_externals(externals, verbose=verbose)
    eager_externals = list(filter(lambda e: e.info.eager, externals))
    skeleton_queue = SkeletonQueue(store, goal_exp, domain)
    disabled = set()
    while (not store.is_terminated()) and (num_iterations < max_iterations):
        start_time = time.time()
        num_iterations += 1
        eager_instantiator = Instantiator(eager_externals, evaluations) # Only update after an increase?
        if eager_disabled:
            push_disabled(eager_instantiator, disabled)
        eager_calls += process_stream_queue(eager_instantiator, store, complexity_limit=complexity_limit, verbose=verbose)

        print('\nIteration: {} | Complexity: {} | Skeletons: {} | Skeleton Queue: {} | Disabled: {} | Evaluations: {} | '
              'Eager Calls: {} | Cost: {:.3f} | Search Time: {:.3f} | Sample Time: {:.3f} | Total Time: {:.3f}'.format(
            num_iterations, complexity_limit, len(skeleton_queue.skeletons), len(skeleton_queue), len(disabled),
            len(evaluations), eager_calls, store.best_cost, search_time, sample_time, store.elapsed_time()))
        optimistic_solve_fn = get_optimistic_solve_fn(goal_exp, domain, negative,
                                                      max_cost=min(store.best_cost, constraints.max_cost),
                                                      unit_efforts=unit_efforts, max_effort=max_effort,
                                                      effort_weight=effort_weight, **search_kwargs)
        if (max_skeletons is not None) and (len(skeleton_queue.skeletons) < max_skeletons):
            combined_plan, cost = iterative_plan_streams(evaluations, externals, optimistic_solve_fn, complexity_limit,
                                                         unit_efforts=unit_efforts, max_effort=max_effort)
        else:
            combined_plan, cost = INFEASIBLE, INF
        if action_info:
            combined_plan = reorder_combined_plan(evaluations, combined_plan, full_action_info, domain)
            print('Combined plan: {}'.format(combined_plan))
        stream_plan, action_plan = separate_plan(combined_plan, full_action_info)
        #stream_plan = replan_with_optimizers(evaluations, stream_plan, domain, externals)
        stream_plan = combine_optimizers(evaluations, stream_plan)
        #stream_plan = get_synthetic_stream_plan(stream_plan, # evaluations
        #                                       [s for s in synthesizers if not s.post_only])
        if reorder:
            stream_plan = reorder_stream_plan(stream_plan) # This may be redundant when using reorder_combined_plan
        print('Stream plan ({}, {:.3f}): {}\nAction plan ({}, {:.3f}): {}'.format(
            get_length(stream_plan), compute_plan_effort(stream_plan), stream_plan,
            get_length(action_plan), cost, str_from_plan(action_plan)))
        if is_plan(stream_plan) and visualize:
            log_plans(stream_plan, action_plan, num_iterations)
            create_visualizations(evaluations, stream_plan, num_iterations)
        search_time += elapsed_time(start_time)

        if (stream_plan is INFEASIBLE) and (not eager_instantiator) and (not skeleton_queue) and (not disabled):
            break
        start_time = time.time()
        if not is_plan(stream_plan):
            complexity_limit += complexity_step
            if not eager_disabled:
                reenable_disabled(evaluations, domain, disabled)
        elif not stream_plan:
            store.add_plan(action_plan, cost)

        if max_skeletons is None:
            process_stream_plan(store, domain, disabled, stream_plan)
        else:
            allocated_sample_time = (search_sample_ratio * search_time) - sample_time
            skeleton_queue.process(stream_plan, action_plan, cost, complexity_limit, allocated_sample_time)
        sample_time += elapsed_time(start_time)

    write_stream_statistics(externals + synthesizers, verbose)
    return store.extract_solution()
Ejemplo n.º 25
0
def collect_scoop(world):
    arm = LEFT_ARM
    spoon_name = create_name(random.choice(SCOOP_SPOONS), 1)
    bowl_name = create_name(random.choice(SCOOP_BOWLS), 1)
    item_ranges = {
        spoon_name:
        InitialRanges(
            width_range=(1., 1.),
            height_range=(1., 1.),
            mass_range=(1., 1.),  # TODO: randomize density?
            pose2d_range=([0.3, 0.5, -np.pi / 2], [0.3, 0.5, -np.pi / 2]),
        ),
        bowl_name:
        InitialRanges(
            width_range=(0.8, 1.2),
            height_range=(0.8, 1.2),
            mass_range=(0.8, 1.2),
            pose2d_range=([0.5, 0.0, -np.pi], [0.5, 0.0,
                                               np.pi]),  # x, y, theta
        ),
    }
    #dump_ranges(SCOOP_SPOONS, None)
    dump_ranges(SCOOP_BOWLS, item_ranges[bowl_name])

    ##################################################

    # TODO: check collisions/feasibility when sampling
    #bowl_fraction = random.uniform(0.5, 0.75)
    bowl_fraction = random.uniform(0.75, 0.75)
    print('Bowl fraction:', bowl_fraction)
    #bead_radius = sample_norm(mu=0.005, sigma=0.0005, lower=0.004, upper=0.007)
    bead_radius = 0.005
    print('Bead radius:', bead_radius)  # Chickpeas have a 1cm diameter
    max_beads = 250

    # TODO: could give the bowl infinite mass
    with ClientSaver(world.client):
        create_table_bodies(world, item_ranges)
        bowl_body = world.get_body(bowl_name)
        update_world(world, target_body=bowl_body)
        parameters_from_name = randomize_dynamics(world)
        parameters_from_name['bead'] = sample_bead_parameters()
        with LockRenderer():
            all_beads = create_beads(max_beads,
                                     bead_radius,
                                     parameters=parameters_from_name['bead'])
        spoon_capacity = estimate_spoon_capacity(world, spoon_name, all_beads)
        print('{} | Capacity: {} | Mass: {:.3f}'.format(
            spoon_name, spoon_capacity, 0.0))
        if spoon_capacity < MIN_CAPACITY:
            return INFEASIBLE
        init_holding = hold_item(world, arm, spoon_name)
        if init_holding is None:
            return INFEASIBLE
        # TODO: relate to the diameter of the spoon head. Ensure fraction above this level
        init_beads = fill_with_beads(world,
                                     bowl_name,
                                     all_beads,
                                     reset_contained=False,
                                     height_fraction=bowl_fraction)
        #wait_for_user()
        masses = list(map(get_mass, init_beads))
        mean_mass = np.average(masses)
        init_mass = sum(masses)
        print('Init beads: {} | Init mass: {:.3f} | Mean mass: {:.3f}'.format(
            len(init_beads), init_mass, mean_mass))
        if len(init_beads) < 2 * spoon_capacity:
            return INFEASIBLE
        world.initial_beads.update({bead: bowl_body for bead in init_beads})

    init = [('Contains', bowl_name, COFFEE)]
    goal = [('Contains', spoon_name, COFFEE)]
    skeleton = [
        ('move-arm', [arm, X, X, X]),
        ('scoop', [arm, bowl_name, X, spoon_name, X, COFFEE, X, X, X]),
    ]
    constraints = PlanConstraints(skeletons=[skeleton], exact=True)
    task = Task(init=init,
                goal=goal,
                arms=[arm],
                init_holding=init_holding,
                constraints=constraints)

    ##################################################

    feature = get_scoop_feature(world, bowl_name, spoon_name)
    initial_pose = world.get_pose(bowl_name)

    def score_fn(plan):
        assert plan is not None
        final_pose = world.get_pose(bowl_name)
        point_distance = get_distance(point_from_pose(initial_pose),
                                      point_from_pose(final_pose))  #, norm=2)
        quat_distance = quat_angle_between(quat_from_pose(initial_pose),
                                           quat_from_pose(final_pose))
        print('Translation: {:.5f} m | Rotation: {:.5f} rads'.format(
            point_distance, quat_distance))

        with ClientSaver(world.client):
            bowl_beads = get_contained_beads(bowl_body, init_beads)
            fraction_bowl = float(
                len(bowl_beads)) / len(init_beads) if init_beads else 0
            mass_in_bowl = sum(map(get_mass, bowl_beads))
            spoon_beads = get_contained_beads(world.get_body(spoon_name),
                                              init_beads)
            fraction_spoon = float(
                len(spoon_beads)) / len(init_beads) if init_beads else 0
            mass_in_spoon = sum(map(get_mass, spoon_beads))
        print('In Bowl: {:.3f} | In Spoon: {:.3f}'.format(
            fraction_bowl, fraction_spoon))
        # TODO: measure change in roll/pitch

        # TODO: could make latent parameters field
        score = {
            # Displacements
            'bowl_translation': point_distance,
            'bowl_rotation': quat_distance,
            # Masses
            'total_mass': init_mass,
            'mass_in_bowl': mass_in_bowl,
            'mass_in_spoon': mass_in_spoon,
            'spoon_mass_capacity':
            (init_mass / len(init_beads)) * spoon_capacity,
            # Counts
            'num_beads': len(init_beads),
            'bowl_beads': len(bowl_beads),
            'spoon_beads': len(spoon_beads),
            'spoon_capacity': spoon_capacity,
            # Fractions
            'fraction_in_bowl': fraction_bowl,
            'fraction_in_spoon': fraction_spoon,
            # Latent
            'bead_radius': bead_radius,
            DYNAMICS: parameters_from_name
        }

        fraction_filled = float(score['spoon_beads']) / score['spoon_capacity']
        spilled_beads = score['num_beads'] - (score['bowl_beads'] +
                                              score['spoon_beads'])
        fraction_spilled = float(spilled_beads) / score['num_beads']
        print('Fraction Filled: {} | Fraction Spilled: {}'.format(
            fraction_filled, fraction_spilled))

        #_, args = find_unique(lambda a: a[0] == 'scoop', plan)
        #control = args[-1]
        return score

    return task, feature, score_fn
Ejemplo n.º 26
0
def collect_push(world):
    arm = LEFT_ARM
    block_name = create_name('purpleblock', 1)
    item_ranges = {
        block_name:
        InitialRanges(
            width_range=(0.75, 1.25),
            height_range=(0.75, 1.25),
            mass_range=(1., 1.),
            pose2d_range=POSE2D_RANGE,  # x, y, theta
        ),
    }

    ##################################################

    # TODO: check collisions/feasibility when sampling
    # TODO: grasps on the blue cup seem off for some reason...
    with ClientSaver(world.client):
        create_table_bodies(world, item_ranges)
        update_world(world, world.get_body(TABLE_NAME))
        parameters_from_name = randomize_dynamics(world)
    stabilize(world)

    lower, upper = item_ranges[block_name].pose2d_range
    goal_pos2d = np.random.uniform(lower, upper)[:2]
    draw_push_goal(world, block_name, goal_pos2d)

    initial_pose = world.perception.get_pose(block_name)
    feature = get_push_feature(world, arm, block_name, initial_pose,
                               goal_pos2d)

    init = [('CanPush', block_name, goal_pos2d)]
    goal = [('InRegion', block_name, goal_pos2d)]
    skeleton = [
        ('move-arm', [arm, X, X, X]),
        ('push', [arm, block_name, X, X, X, X, X]),
    ]
    constraints = PlanConstraints(skeletons=[skeleton], exact=True)
    task = Task(init=init, goal=goal, arms=[arm], constraints=constraints)

    ##################################################

    def score_fn(plan):
        assert plan is not None
        initial_distance = get_distance(
            point_from_pose(initial_pose)[:2], goal_pos2d)
        final_pose = world.perception.get_pose(block_name)
        final_distance = get_distance(
            point_from_pose(final_pose)[:2], goal_pos2d)
        quat_distance = quat_angle_between(quat_from_pose(initial_pose),
                                           quat_from_pose(final_pose))
        print(
            'Initial: {:.5f} m | Final: {:.5f} | Rotation: {:.5f} rads'.format(
                initial_distance, final_distance, quat_distance))
        # TODO: compare orientation to final predicted orientation
        # TODO: record simulation time in the event that the controller gets stuck

        score = {
            'initial_distance': initial_distance,
            'final_distance': final_distance,
            'rotation': quat_distance,
            DYNAMICS: parameters_from_name,
        }

        #_, args = find_unique(lambda a: a[0] == 'push', plan)
        #control = args[-1]
        return score

    return task, feature, score_fn
Ejemplo n.º 27
0
def solve_abstract(problem,
                   constraints=PlanConstraints(),
                   stream_info={},
                   replan_actions=set(),
                   unit_costs=False,
                   success_cost=INF,
                   max_time=INF,
                   max_iterations=INF,
                   max_memory=INF,
                   initial_complexity=0,
                   complexity_step=1,
                   max_complexity=INF,
                   max_skeletons=INF,
                   search_sample_ratio=0,
                   bind=True,
                   max_failures=0,
                   unit_efforts=False,
                   max_effort=INF,
                   effort_weight=None,
                   reorder=True,
                   visualize=False,
                   verbose=True,
                   **search_kwargs):
    """
    Solves a PDDLStream problem by first planning with optimistic stream outputs and then querying streams
    :param problem: a PDDLStream problem
    :param constraints: PlanConstraints on the set of legal solutions
    :param stream_info: a dictionary from stream name to StreamInfo altering how individual streams are handled
    :param replan_actions: the actions declared to induce replanning for the purpose of deferred stream evaluation

    :param unit_costs: use unit action costs rather than numeric costs
    :param success_cost: the exclusive (strict) upper bound on plan cost to successfully terminate

    :param max_time: the maximum runtime
    :param max_iterations: the maximum number of search iterations
    :param max_memory: the maximum amount of memory

    :param initial_complexity: the initial stream complexity limit
    :param complexity_step: the increase in the stream complexity limit per iteration
    :param max_complexity: the maximum stream complexity limit

    :param max_skeletons: the maximum number of plan skeletons (max_skeletons=None indicates not adaptive)
    :param search_sample_ratio: the desired ratio of sample time / search time when max_skeletons!=None
    :param bind: if True, propagates parameter bindings when max_skeletons=None
    :param max_failures: the maximum number of stream failures before switching phases when max_skeletons=None

    :param unit_efforts: use unit stream efforts rather than estimated numeric efforts
    :param max_effort: the maximum amount of stream effort
    :param effort_weight: a multiplier for stream effort compared to action costs
    :param reorder: if True, reorder stream plans to minimize the expected sampling overhead

    :param visualize: if True, draw the constraint network and stream plan as a graphviz file
    :param verbose: if True, print the result of each stream application
    :param search_kwargs: keyword args for the search subroutine

    :return: a tuple (plan, cost, evaluations) where plan is a sequence of actions
        (or None), cost is the cost of the plan (INF if no plan), and evaluations is init expanded
        using stream applications
    """
    # TODO: select whether to search or sample based on expected success rates
    # TODO: no optimizers during search with relaxed_stream_plan
    # TODO: locally optimize only after a solution is identified
    # TODO: replan with a better search algorithm after feasible
    # TODO: change the search algorithm and unit costs based on the best cost
    use_skeletons = (max_skeletons is not None)
    #assert implies(use_skeletons, search_sample_ratio > 0)
    eager_disabled = (effort_weight is None
                      )  # No point if no stream effort biasing
    num_iterations = eager_calls = 0
    complexity_limit = initial_complexity

    evaluations, goal_exp, domain, externals = parse_problem(
        problem,
        stream_info=stream_info,
        constraints=constraints,
        unit_costs=unit_costs,
        unit_efforts=unit_efforts)
    identify_non_producers(externals)
    enforce_simultaneous(domain, externals)
    compile_fluent_streams(domain, externals)
    # TODO: make effort_weight be a function of the current cost
    # if (effort_weight is None) and not has_costs(domain):
    #     effort_weight = 1

    load_stream_statistics(externals)
    if visualize and not has_pygraphviz():
        visualize = False
        print(
            'Warning, visualize=True requires pygraphviz. Setting visualize=False'
        )
    if visualize:
        reset_visualizations()
    streams, functions, negative, optimizers = partition_externals(
        externals, verbose=verbose)
    eager_externals = list(filter(lambda e: e.info.eager, externals))
    positive_externals = streams + functions + optimizers
    has_optimizers = bool(optimizers)  # TODO: deprecate
    assert implies(has_optimizers, use_skeletons)

    ################

    store = SolutionStore(evaluations,
                          max_time,
                          success_cost,
                          verbose,
                          max_memory=max_memory)
    skeleton_queue = SkeletonQueue(store, domain, disable=not has_optimizers)
    disabled = set()  # Max skeletons after a solution
    while (not store.is_terminated()) and (
            num_iterations < max_iterations) and (complexity_limit <=
                                                  max_complexity):
        num_iterations += 1
        eager_instantiator = Instantiator(
            eager_externals, evaluations)  # Only update after an increase?
        if eager_disabled:
            push_disabled(eager_instantiator, disabled)
        if eager_externals:
            eager_calls += process_stream_queue(
                eager_instantiator,
                store,
                complexity_limit=complexity_limit,
                verbose=verbose)

        ################

        print(
            '\nIteration: {} | Complexity: {} | Skeletons: {} | Skeleton Queue: {} | Disabled: {} | Evaluations: {} | '
            'Eager Calls: {} | Cost: {:.3f} | Search Time: {:.3f} | Sample Time: {:.3f} | Total Time: {:.3f}'
            .format(num_iterations, complexity_limit,
                    len(skeleton_queue.skeletons), len(skeleton_queue),
                    len(disabled), len(evaluations), eager_calls,
                    store.best_cost, store.search_time, store.sample_time,
                    store.elapsed_time()))
        optimistic_solve_fn = get_optimistic_solve_fn(
            goal_exp,
            domain,
            negative,
            replan_actions=replan_actions,
            reachieve=use_skeletons,
            max_cost=min(store.best_cost, constraints.max_cost),
            max_effort=max_effort,
            effort_weight=effort_weight,
            **search_kwargs)
        # TODO: just set unit effort for each stream beforehand
        if (max_skeletons is None) or (len(skeleton_queue.skeletons) <
                                       max_skeletons):
            disabled_axioms = create_disabled_axioms(
                skeleton_queue) if has_optimizers else []
            if disabled_axioms:
                domain.axioms.extend(disabled_axioms)
            stream_plan, opt_plan, cost = iterative_plan_streams(
                evaluations,
                positive_externals,
                optimistic_solve_fn,
                complexity_limit,
                max_effort=max_effort)
            for axiom in disabled_axioms:
                domain.axioms.remove(axiom)
        else:
            stream_plan, opt_plan, cost = OptSolution(
                INFEASIBLE, INFEASIBLE, INF)  # TODO: apply elsewhere

        ################

        #stream_plan = replan_with_optimizers(evaluations, stream_plan, domain, externals) or stream_plan
        stream_plan = combine_optimizers(evaluations, stream_plan)
        #stream_plan = get_synthetic_stream_plan(stream_plan, # evaluations
        #                                       [s for s in synthesizers if not s.post_only])
        #stream_plan = recover_optimistic_outputs(stream_plan)
        if reorder:
            # TODO: this blows up memory wise for long stream plans
            stream_plan = reorder_stream_plan(store, stream_plan)

        num_optimistic = sum(r.optimistic
                             for r in stream_plan) if stream_plan else 0
        action_plan = opt_plan.action_plan if is_plan(opt_plan) else opt_plan
        print('Stream plan ({}, {}, {:.3f}): {}\nAction plan ({}, {:.3f}): {}'.
              format(get_length(stream_plan), num_optimistic,
                     compute_plan_effort(stream_plan), stream_plan,
                     get_length(action_plan), cost,
                     str_from_plan(action_plan)))
        if is_plan(stream_plan) and visualize:
            log_plans(stream_plan, action_plan, num_iterations)
            create_visualizations(evaluations, stream_plan, num_iterations)

        ################

        if (stream_plan is INFEASIBLE) and (not eager_instantiator) and (
                not skeleton_queue) and (not disabled):
            break
        if not is_plan(stream_plan):
            print('No plan: increasing complexity from {} to {}'.format(
                complexity_limit, complexity_limit + complexity_step))
            complexity_limit += complexity_step
            if not eager_disabled:
                reenable_disabled(evaluations, domain, disabled)

        #print(stream_plan_complexity(evaluations, stream_plan))
        if not use_skeletons:
            process_stream_plan(store,
                                domain,
                                disabled,
                                stream_plan,
                                opt_plan,
                                cost,
                                bind=bind,
                                max_failures=max_failures)
            continue

        ################

        #optimizer_plan = replan_with_optimizers(evaluations, stream_plan, domain, optimizers)
        optimizer_plan = None
        if optimizer_plan is not None:
            # TODO: post process a bound plan
            print('Optimizer plan ({}, {:.3f}): {}'.format(
                get_length(optimizer_plan),
                compute_plan_effort(optimizer_plan), optimizer_plan))
            skeleton_queue.new_skeleton(optimizer_plan, opt_plan, cost)

        allocated_sample_time = (search_sample_ratio * store.search_time) - store.sample_time \
            if len(skeleton_queue.skeletons) <= max_skeletons else INF
        if skeleton_queue.process(stream_plan, opt_plan, cost,
                                  complexity_limit,
                                  allocated_sample_time) is INFEASIBLE:
            break

    ################

    summary = store.export_summary()
    summary.update({
        'iterations': num_iterations,
        'complexity': complexity_limit,
        'skeletons': len(skeleton_queue.skeletons),
    })
    print('Summary: {}'.format(str_from_object(
        summary, ndigits=3)))  # TODO: return the summary

    write_stream_statistics(externals, verbose)
    return store.extract_solution()
Ejemplo n.º 28
0
def solve_focused(problem,
                  constraints=PlanConstraints(),
                  stream_info={},
                  replan_actions=set(),
                  max_time=INF,
                  max_iterations=INF,
                  initial_complexity=0,
                  complexity_step=1,
                  max_skeletons=INF,
                  bind=True,
                  max_failures=0,
                  unit_costs=False,
                  success_cost=INF,
                  unit_efforts=False,
                  max_effort=INF,
                  effort_weight=None,
                  reorder=True,
                  search_sample_ratio=0,
                  visualize=False,
                  verbose=True,
                  **search_kwargs):
    """
    Solves a PDDLStream problem by first hypothesizing stream outputs and then determining whether they exist
    :param problem: a PDDLStream problem
    :param constraints: PlanConstraints on the set of legal solutions
    :param stream_info: a dictionary from stream name to StreamInfo altering how individual streams are handled
    :param max_time: the maximum amount of time to apply streams
    :param max_iterations: the maximum number of search iterations
    :param max_skeletons: the maximum number of plan skeletons to consider
    :param unit_costs: use unit action costs rather than numeric costs
    :param success_cost: an exclusive (strict) upper bound on plan cost to terminate
    :param unit_efforts: use unit stream efforts rather than estimated numeric efforts
    :param initial_complexity: the initial effort limit
    :param complexity_step: the increase in the effort limit after each failure
    :param max_effort: the maximum amount of effort to consider for streams
    :param effort_weight: a multiplier for stream effort compared to action costs
    :param reorder: if True, stream plans are reordered to minimize the expected sampling overhead
    :param search_sample_ratio: the desired ratio of search time / sample time
    :param visualize: if True, it draws the constraint network and stream plan as a graphviz file
    :param verbose: if True, this prints the result of each stream application
    :param search_kwargs: keyword args for the search subroutine
    :return: a tuple (plan, cost, evaluations) where plan is a sequence of actions
        (or None), cost is the cost of the plan, and evaluations is init but expanded
        using stream applications
    """
    # TODO: select whether to search or sample based on expected success rates
    # TODO: no optimizers during search with relaxed_stream_plan
    # TODO: locally optimize only after a solution is identified
    # TODO: replan with a better search algorithm after feasible
    num_iterations = search_time = sample_time = eager_calls = 0
    complexity_limit = initial_complexity
    # TODO: make effort_weight be a function of the current cost
    # TODO: change the search algorithm and unit costs based on the best cost
    eager_disabled = effort_weight is None  # No point if no stream effort biasing
    evaluations, goal_exp, domain, externals = parse_problem(
        problem,
        stream_info=stream_info,
        constraints=constraints,
        unit_costs=unit_costs,
        unit_efforts=unit_efforts)
    store = SolutionStore(evaluations, max_time, success_cost, verbose)
    load_stream_statistics(externals)
    if visualize and not has_pygraphviz():
        visualize = False
        print(
            'Warning, visualize=True requires pygraphviz. Setting visualize=False'
        )
    if visualize:
        reset_visualizations()
    streams, functions, negative, optimizers = partition_externals(
        externals, verbose=verbose)
    eager_externals = list(filter(lambda e: e.info.eager, externals))
    use_skeletons = max_skeletons is not None
    has_optimizers = bool(optimizers)
    assert implies(has_optimizers, use_skeletons)
    skeleton_queue = SkeletonQueue(store, domain, disable=not has_optimizers)
    disabled = set()  # Max skeletons after a solution
    while (not store.is_terminated()) and (num_iterations < max_iterations):
        start_time = time.time()
        num_iterations += 1
        eager_instantiator = Instantiator(
            eager_externals, evaluations)  # Only update after an increase?
        if eager_disabled:
            push_disabled(eager_instantiator, disabled)
        eager_calls += process_stream_queue(eager_instantiator,
                                            store,
                                            complexity_limit=complexity_limit,
                                            verbose=verbose)

        print(
            '\nIteration: {} | Complexity: {} | Skeletons: {} | Skeleton Queue: {} | Disabled: {} | Evaluations: {} | '
            'Eager Calls: {} | Cost: {:.3f} | Search Time: {:.3f} | Sample Time: {:.3f} | Total Time: {:.3f}'
            .format(num_iterations, complexity_limit,
                    len(skeleton_queue.skeletons), len(skeleton_queue),
                    len(disabled), len(evaluations), eager_calls,
                    store.best_cost, search_time, sample_time,
                    store.elapsed_time()))
        optimistic_solve_fn = get_optimistic_solve_fn(
            goal_exp,
            domain,
            negative,
            replan_actions=replan_actions,
            reachieve=use_skeletons,
            max_cost=min(store.best_cost, constraints.max_cost),
            max_effort=max_effort,
            effort_weight=effort_weight,
            **search_kwargs)
        # TODO: just set unit effort for each stream beforehand
        if (max_skeletons is None) or (len(skeleton_queue.skeletons) <
                                       max_skeletons):
            disabled_axioms = create_disabled_axioms(
                skeleton_queue) if has_optimizers else []
            if disabled_axioms:
                domain.axioms.extend(disabled_axioms)
            stream_plan, action_plan, cost = iterative_plan_streams(
                evaluations, (streams + functions + optimizers),
                optimistic_solve_fn,
                complexity_limit,
                max_effort=max_effort)
            for axiom in disabled_axioms:
                domain.axioms.remove(axiom)
        else:
            stream_plan, action_plan, cost = INFEASIBLE, INFEASIBLE, INF
        #stream_plan = replan_with_optimizers(evaluations, stream_plan, domain, externals) or stream_plan
        stream_plan = combine_optimizers(evaluations, stream_plan)
        #stream_plan = get_synthetic_stream_plan(stream_plan, # evaluations
        #                                       [s for s in synthesizers if not s.post_only])
        if reorder:
            stream_plan = reorder_stream_plan(
                stream_plan
            )  # This may be redundant when using reorder_combined_plan

        num_optimistic = sum(r.optimistic
                             for r in stream_plan) if stream_plan else 0
        print('Stream plan ({}, {}, {:.3f}): {}\nAction plan ({}, {:.3f}): {}'.
              format(get_length(stream_plan), num_optimistic,
                     compute_plan_effort(stream_plan), stream_plan,
                     get_length(action_plan), cost,
                     str_from_plan(action_plan)))
        if is_plan(stream_plan) and visualize:
            log_plans(stream_plan, action_plan, num_iterations)
            create_visualizations(evaluations, stream_plan, num_iterations)
        search_time += elapsed_time(start_time)

        if (stream_plan is INFEASIBLE) and (not eager_instantiator) and (
                not skeleton_queue) and (not disabled):
            break
        start_time = time.time()
        if not is_plan(stream_plan):
            complexity_limit += complexity_step
            if not eager_disabled:
                reenable_disabled(evaluations, disabled)

        #print(stream_plan_complexity(evaluations, stream_plan))
        if use_skeletons:
            #optimizer_plan = replan_with_optimizers(evaluations, stream_plan, domain, optimizers)
            optimizer_plan = None
            if optimizer_plan is not None:
                # TODO: post process a bound plan
                print('Optimizer plan ({}, {:.3f}): {}'.format(
                    get_length(optimizer_plan),
                    compute_plan_effort(optimizer_plan), optimizer_plan))
                skeleton_queue.new_skeleton(optimizer_plan, action_plan, cost)
            allocated_sample_time = (search_sample_ratio * search_time) - sample_time \
                if len(skeleton_queue.skeletons) <= max_skeletons else INF
            skeleton_queue.process(stream_plan, action_plan, cost,
                                   complexity_limit, allocated_sample_time)
        else:
            process_stream_plan(store,
                                domain,
                                disabled,
                                stream_plan,
                                action_plan,
                                cost,
                                bind=bind,
                                max_failures=max_failures)
        sample_time += elapsed_time(start_time)

    write_stream_statistics(externals, verbose)
    return store.extract_solution()