Ejemplo n.º 1
0
def main(deterministic=False,
         observable=False,
         collisions=True,
         focused=True,
         factor=True):
    # TODO: global search over the state
    belief_problem = get_belief_problem(deterministic, observable)
    pddlstream_problem = to_pddlstream(belief_problem, collisions)
    set_cost_scale(SCALE_COST)
    print('Cost scale:', get_cost_scale())

    pr = cProfile.Profile()
    pr.enable()
    planner = 'ff-wastar1'
    if focused:
        stream_info = {
            'GE': StreamInfo(from_test(ge_fn), eager=False),
            'prob-after-move':
            StreamInfo(from_fn(get_opt_move_fn(factor=factor))),
            'MoveCost': FunctionInfo(move_cost_fn),
            'prob-after-look':
            StreamInfo(from_fn(get_opt_obs_fn(factor=factor))),
            'LookCost': FunctionInfo(get_look_cost_fn(p_look_fp=0,
                                                      p_look_fn=0)),
        }
        solution = solve_focused(pddlstream_problem,
                                 stream_info=stream_info,
                                 planner=planner,
                                 debug=False,
                                 success_cost=0,
                                 unit_costs=False,
                                 max_time=30)
    else:
        solution = solve_incremental(pddlstream_problem,
                                     planner=planner,
                                     debug=True,
                                     success_cost=MAX_COST,
                                     unit_costs=False,
                                     max_time=30)
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)

    print_solution(solution)
    plan, cost, init = solution
    print('Real cost:', cost)
Ejemplo n.º 2
0
def set_unit_costs(domain):
    # Cost of None becomes zero if metric = True
    set_cost_scale(1)
    for action in domain.actions:
        action.cost = make_cost(1)
Ejemplo n.º 3
0
def solve_pddlstream(problem,
                     node_points,
                     element_bodies,
                     planner=GREEDY_PLANNER,
                     max_time=60):
    # TODO: try search at different cost levels (i.e. w/ and w/o abstract)
    # TODO: only consider axioms that could be relevant
    # TODO: iterated search using random restarts
    # TODO: most of the time seems to be spent extracting the stream plan
    # TODO: NEGATIVE_SUFFIX to make axioms easier
    # TODO: sort by action cost heuristic
    # http://www.fast-downward.org/Doc/Evaluator#Max_evaluator

    temporal = DURATIVE_ACTIONS in problem.domain_pddl
    print('Init:', problem.init)
    print('Goal:', problem.goal)
    print('Max time:', max_time)
    print('Temporal:', temporal)

    stream_info = {
        # TODO: stream effort
        'sample-print':
        StreamInfo(PartialInputs(unique=True)),
        'sample-move':
        StreamInfo(PartialInputs(unique=True)),
        'test-cfree-traj-conf':
        StreamInfo(p_success=1e-2, negate=True),  # , verbose=False),
        'test-cfree-traj-traj':
        StreamInfo(p_success=1e-2, negate=True),
        'TrajConfCollision':
        FunctionInfo(p_success=1e-1, overhead=1),  # TODO: verbose
        'TrajTrajCollision':
        FunctionInfo(p_success=1e-1, overhead=1),  # TODO: verbose
        'Distance':
        FunctionInfo(opt_fn=get_opt_distance_fn(element_bodies, node_points),
                     eager=True)
        # 'Length': FunctionInfo(eager=True),  # Need to eagerly evaluate otherwise 0 makespan (failure)
        # 'Duration': FunctionInfo(opt_fn=lambda r, t: opt_distance / TOOL_VELOCITY, eager=True),
        # 'Euclidean': FunctionInfo(eager=True),
    }

    # TODO: goal serialization
    # TODO: could revert back to goal count now that no deadends
    # TODO: limit the branching factor if necessary
    # TODO: ensure that function costs aren't prunning plans
    if not temporal:
        # Reachability heuristics good for detecting dead-ends
        # Infeasibility from the start means disconnected or collision
        set_cost_scale(1)
        # planner = 'ff-ehc'
        # planner = 'ff-lazy-tiebreak' # Branching factor becomes large. Rely on preferred. Preferred should also be cheaper
        planner = 'ff-eager-tiebreak'  # Need to use a eager search, otherwise doesn't incorporate child cost
        # planner = 'max-astar'

    # TODO: assert (instance.value == value)
    with LockRenderer(lock=False):
        # solution = solve_incremental(problem, planner='add-random-lazy', max_time=600,
        #                              max_planner_time=300, debug=True)
        # TODO: allow some types of failures
        solution = solve_focused(
            problem,
            stream_info=stream_info,
            max_time=max_time,
            effort_weight=None,
            unit_efforts=True,
            unit_costs=False,  # TODO: effort_weight=None vs 0
            max_skeletons=None,
            bind=True,
            max_failures=INF,  # 0 | INF
            planner=planner,
            max_planner_time=60,
            debug=False,
            reorder=False,
            initial_complexity=1)

    print_solution(solution)
    plan, _, certificate = solution
    # TODO: post-process by calling planner again
    # TODO: could solve for trajectories conditioned on the sequence
    return plan, certificate
Ejemplo n.º 4
0
def solve_pddlstream(belief,
                     problem,
                     args,
                     skeleton=None,
                     replan_actions=set(),
                     max_time=INF,
                     max_memory=MAX_MEMORY,
                     max_cost=INF):
    set_cost_scale(COST_SCALE)
    reset_globals()
    stream_info = get_stream_info()
    #print(set(stream_map) - set(stream_info))
    skeletons = create_ordered_skeleton(skeleton)
    max_cost = min(max_cost, COST_BOUND)
    print('Max cost: {:.3f} | Max runtime: {:.3f}'.format(max_cost, max_time))
    constraints = PlanConstraints(skeletons=skeletons,
                                  max_cost=max_cost,
                                  exact=True)

    success_cost = 0 if args.anytime else INF
    planner = 'ff-astar' if args.anytime else 'ff-wastar2'
    search_sample_ratio = 0.5  # 0.5
    max_planner_time = 10
    # TODO: max number of samples per iteration flag
    # TODO: don't greedily expand samples with too high of a complexity if out of time

    pr = cProfile.Profile()
    pr.enable()
    saver = WorldSaver()
    sim_state = belief.sample_state()
    sim_state.assign()
    wait_for_duration(0.1)
    with LockRenderer(lock=not args.visualize):
        # TODO: option to only consider costs during local optimization
        # effort_weight = 0 if args.anytime else 1
        effort_weight = 1e-3 if args.anytime else 1
        #effort_weight = 0
        #effort_weight = None
        solution = solve_focused(
            problem,
            constraints=constraints,
            stream_info=stream_info,
            replan_actions=replan_actions,
            initial_complexity=5,
            planner=planner,
            max_planner_time=max_planner_time,
            unit_costs=args.unit,
            success_cost=success_cost,
            max_time=max_time,
            max_memory=max_memory,
            verbose=True,
            debug=False,
            unit_efforts=True,
            effort_weight=effort_weight,
            max_effort=INF,
            # bind=True, max_skeletons=None,
            search_sample_ratio=search_sample_ratio)
        saver.restore()

    # print([(s.cost, s.time) for s in SOLUTIONS])
    # print(SOLUTIONS)
    print_solution(solution)
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(25)  # cumtime | tottime
    return solution