Ejemplo n.º 1
0
def compute_function_plan(opt_evaluations, action_plan, unit_costs):
    function_plan = set()
    if unit_costs:
        return function_plan
    results_from_head = get_results_from_head(opt_evaluations)
    for action_instance in action_plan:
        action = action_instance.action
        if action is None:
            continue
        args = [action_instance.var_mapping[p.name] for p in action.parameters]
        function_result = extract_function_results(results_from_head, action,
                                                   args)
        if function_result is not None:
            function_plan.add(function_result)
    return function_plan
Ejemplo n.º 2
0
def simplify_actions(opt_evaluations, action_plan, task, actions, unit_costs):
    # TODO: add ordering constraints to simplify the optimization
    import pddl
    import instantiate

    fluent_facts = MockSet()
    init_facts = set()
    type_to_objects = instantiate.get_objects_by_type(task.objects, task.types)
    results_from_head = get_results_from_head(opt_evaluations)

    action_from_name = {}
    function_plan = set()
    for i, (name, args) in enumerate(action_plan):
        action = find_unique(lambda a: a.name == name, actions)
        assert (len(action.parameters) == len(args))
        # parameters = action.parameters[:action.num_external_parameters]
        var_mapping = {p.name: a for p, a in zip(action.parameters, args)}
        new_name = '{}-{}'.format(name, i)
        new_parameters = action.parameters[len(args):]
        new_preconditions = []
        action.precondition.instantiate(var_mapping, init_facts, fluent_facts, new_preconditions)
        new_effects = []
        for eff in action.effects:
            eff.instantiate(var_mapping, init_facts, fluent_facts, type_to_objects, new_effects)
        new_effects = [pddl.Effect([], pddl.Conjunction(conditions), effect)
                       for conditions, effect in new_effects]
        cost = pddl.Increase(fluent=pddl.PrimitiveNumericExpression(symbol=TOTAL_COST, args=[]),
                             expression=pddl.NumericConstant(1))
        # cost = None
        task.actions.append(pddl.Action(new_name, new_parameters, len(new_parameters),
                                        pddl.Conjunction(new_preconditions), new_effects, cost))
        action_from_name[new_name] = (name, map(obj_from_pddl, args))
        if not unit_costs:
            function_result = extract_function_results(results_from_head, action, args)
            if function_result is not None:
                function_plan.add(function_result)
    return action_from_name, list(function_plan)
Ejemplo n.º 3
0
def recover_stream_plan(evaluations,
                        goal_expression,
                        domain,
                        stream_results,
                        action_plan,
                        negative,
                        unit_costs,
                        optimize=True):
    import pddl_to_prolog
    import build_model
    import pddl
    import axiom_rules
    import instantiate
    # Universally quantified conditions are converted into negative axioms
    # Existentially quantified conditions are made additional preconditions
    # Universally quantified effects are instantiated by doing the cartesian produce of types (slow)
    # Added effects cancel out removed effects

    opt_evaluations = evaluations_from_stream_plan(evaluations, stream_results)
    opt_task = task_from_domain_problem(
        domain,
        get_problem(opt_evaluations, goal_expression, domain, unit_costs))
    real_task = task_from_domain_problem(
        domain, get_problem(evaluations, goal_expression, domain, unit_costs))
    function_assignments = {
        fact.fluent: fact.expression
        for fact in opt_task.init  # init_facts
        if isinstance(fact, pddl.f_expression.FunctionAssignment)
    }
    type_to_objects = instantiate.get_objects_by_type(opt_task.objects,
                                                      opt_task.types)
    results_from_head = get_results_from_head(opt_evaluations)

    action_instances = []
    for name, args in action_plan:  # TODO: negative atoms in actions
        candidates = []
        for action in opt_task.actions:
            if action.name != name:
                continue
            if len(action.parameters) != len(args):
                raise NotImplementedError(
                    'Existential quantifiers are not currently '
                    'supported in preconditions: {}'.format(name))
            variable_mapping = {
                p.name: a
                for p, a in zip(action.parameters, args)
            }
            instance = action.instantiate(variable_mapping, set(), MockSet(),
                                          type_to_objects,
                                          opt_task.use_min_cost_metric,
                                          function_assignments)
            assert (instance is not None)
            candidates.append(((action, args), instance))
        if not candidates:
            raise RuntimeError(
                'Could not find an applicable action {}'.format(name))
        action_instances.append(candidates)
    action_instances.append([(None, get_goal_instance(opt_task.goal))])

    axioms_from_name = get_derived_predicates(opt_task.axioms)
    negative_from_name = {n.name: n for n in negative}
    opt_task.actions = []
    opt_state = set(opt_task.init)
    real_state = set(real_task.init)
    preimage_plan = []
    function_plan = set()
    for layer in action_instances:
        for pair, instance in layer:
            nonderived_preconditions = [
                l for l in instance.precondition
                if l.predicate not in axioms_from_name
            ]
            #nonderived_preconditions = instance.precondition
            if not conditions_hold(opt_state, nonderived_preconditions):
                continue
            opt_task.init = opt_state
            original_axioms = opt_task.axioms
            axiom_from_action = get_necessary_axioms(instance, original_axioms,
                                                     negative_from_name)
            opt_task.axioms = []
            opt_task.actions = axiom_from_action.keys()
            # TODO: maybe it would just be better to drop the negative throughout this process until this end
            with Verbose(False):
                model = build_model.compute_model(
                    pddl_to_prolog.translate(
                        opt_task))  # Changes based on init
            opt_task.axioms = original_axioms

            opt_facts = instantiate.get_fluent_facts(
                opt_task, model) | (opt_state - real_state)
            mock_fluent = MockSet(lambda item: (
                item.predicate in negative_from_name) or (item in opt_facts))
            instantiated_axioms = instantiate_necessary_axioms(
                model, real_state, mock_fluent, axiom_from_action)
            with Verbose(False):
                helpful_axioms, axiom_init, _ = axiom_rules.handle_axioms(
                    [instance], instantiated_axioms, [])
            axiom_from_atom = get_achieving_axioms(opt_state, helpful_axioms,
                                                   axiom_init,
                                                   negative_from_name)
            axiom_plan = []  # Could always add all conditions
            extract_axioms(axiom_from_atom, instance.precondition, axiom_plan)
            # TODO: test if no derived solution

            # TODO: compute required stream facts in a forward way and allow opt facts that are already known required
            for effects in [instance.add_effects, instance.del_effects]:
                for i, (conditions, effect) in enumerate(effects[::-1]):
                    if any(c.predicate in axioms_from_name
                           for c in conditions):
                        raise NotImplementedError(
                            'Conditional effects cannot currently involve derived predicates'
                        )
                    if conditions_hold(real_state, conditions):
                        # Holds in real state
                        effects[i] = ([], effect)
                    elif not conditions_hold(opt_state, conditions):
                        # Does not hold in optimistic state
                        effects.pop(i)
                    else:
                        # TODO: handle more general case where can choose to achieve particular conditional effects
                        raise NotImplementedError(
                            'Conditional effects cannot currently involve certified predicates'
                        )
            #if any(conditions for conditions, _ in instance.add_effects + instance.del_effects):
            #    raise NotImplementedError('Conditional effects are not currently supported: {}'.format(instance.name))

            # TODO: add axiom init to reset state?
            apply_action(opt_state, instance)
            apply_action(real_state, instance)
            preimage_plan.extend(axiom_plan + [instance])
            if not unit_costs and (pair is not None):
                function_plan.update(
                    extract_function_results(results_from_head, *pair))
            break
        else:
            raise RuntimeError('No action instances are applicable')

    preimage = plan_preimage(preimage_plan, set())
    preimage -= set(real_task.init)
    negative_preimage = set(
        filter(lambda a: a.predicate in negative_from_name, preimage))
    preimage -= negative_preimage
    # visualize_constraints(map(fact_from_fd, preimage))
    # TODO: prune with rules
    # TODO: linearization that takes into account satisfied goals at each level
    # TODO: can optimize for all streams & axioms all at once

    for literal in negative_preimage:
        negative = negative_from_name[literal.predicate]
        instance = negative.get_instance(map(obj_from_pddl, literal.args))
        value = not literal.negated
        if instance.enumerated:
            assert (instance.value == value)
        else:
            function_plan.add(
                PredicateResult(instance, value, opt_index=instance.opt_index))

    node_from_atom = get_achieving_streams(evaluations, stream_results)
    preimage_facts = list(
        map(fact_from_fd, filter(lambda l: not l.negated, preimage)))
    stream_plan = []
    extract_stream_plan(node_from_atom, preimage_facts, stream_plan)
    if not optimize:  # TODO: detect this based on unique or not
        return stream_plan + list(function_plan)

    # TODO: search in space of partially ordered plans
    # TODO: local optimization - remove one and see if feasible

    reschedule_problem = get_problem(evaluations,
                                     And(*preimage_facts),
                                     domain,
                                     unit_costs=True)
    reschedule_task = task_from_domain_problem(domain, reschedule_problem)
    reschedule_task.actions, stream_result_from_name = get_stream_actions(
        stream_results)
    new_plan, _ = solve_from_task(reschedule_task,
                                  planner='max-astar',
                                  debug=False)
    # TODO: investigate admissible heuristics
    if new_plan is None:
        return stream_plan + list(function_plan)

    new_stream_plan = [stream_result_from_name[name] for name, _ in new_plan]
    return new_stream_plan + list(function_plan)
Ejemplo n.º 4
0
def sequential_stream_plan(evaluations, goal_expression, domain, stream_results, negated, unit_costs=True, **kwargs):
    if negated:
        raise NotImplementedError()
    # TODO: compute preimage and make that the goal instead
    opt_evaluations = evaluations_from_stream_plan(evaluations, stream_results)
    opt_task = task_from_domain_problem(domain, get_problem(opt_evaluations, goal_expression, domain, unit_costs))
    action_plan, action_cost = solve_from_task(opt_task, **kwargs)
    if action_plan is None:
        return None, action_cost

    import instantiate
    fluent_facts = MockSet()
    init_facts = set()
    task = task_from_domain_problem(domain, get_problem(evaluations, goal_expression, domain, unit_costs))

    type_to_objects = instantiate.get_objects_by_type(task.objects, task.types)
    task.actions, stream_result_from_name = get_stream_actions(stream_results)
    results_from_head = get_results_from_head(opt_evaluations)

    # TODO: add ordering constraints to simplify the optimization
    import pddl
    action_from_name = {}
    function_plan = set()
    for i, (name, args) in enumerate(action_plan):
        action = find_unique(lambda a: a.name == name, domain.actions)
        assert(len(action.parameters) == len(args))
        #parameters = action.parameters[:action.num_external_parameters]
        var_mapping = {p.name: a for p, a in zip(action.parameters, args)}
        new_name = '{}-{}'.format(name, i)
        new_parameters = action.parameters[len(args):]
        new_preconditions = []
        action.precondition.instantiate(var_mapping, init_facts, fluent_facts, new_preconditions)
        new_effects = []
        for eff in action.effects:
            eff.instantiate(var_mapping, init_facts, fluent_facts, type_to_objects, new_effects)
        new_effects = [pddl.Effect([], pddl.Conjunction(conditions), effect)
                      for conditions, effect in new_effects]
        cost = pddl.Increase(fluent=pddl.PrimitiveNumericExpression(symbol=TOTAL_COST, args=[]),
                             expression=pddl.NumericConstant(1))
        #cost = None
        task.actions.append(pddl.Action(new_name, new_parameters, 0,
                                   pddl.Conjunction(new_preconditions), new_effects, cost))
        action_from_name[new_name] = (name, map(obj_from_pddl, args))
        if not unit_costs:
            function_plan.update(extract_function_results(results_from_head, action, args))

    planner = kwargs.get('planner', 'ff-astar')
    combined_plan, _ = solve_from_task(task, planner=planner, **kwargs)
    if combined_plan is None:
        return None, obj_from_pddl_plan(action_plan), INF
    stream_plan = []
    action_plan = []
    for name, args in combined_plan:
        if name in stream_result_from_name:
            stream_plan.append(stream_result_from_name[name])
        else:
            action_plan.append(action_from_name[name])
    stream_plan += list(function_plan)
    combined_plan = stream_plan + action_plan

    return combined_plan, action_cost
Ejemplo n.º 5
0
def recover_stream_plan(evaluations, goal_expression, domain, stream_results, action_plan, negative, unit_costs):
    import pddl
    import instantiate
    # Universally quantified conditions are converted into negative axioms
    # Existentially quantified conditions are made additional preconditions
    # Universally quantified effects are instantiated by doing the cartesian produce of types (slow)
    # Added effects cancel out removed effects

    real_task = task_from_domain_problem(domain, get_problem(evaluations, goal_expression, domain, unit_costs))
    node_from_atom = get_achieving_streams(evaluations, stream_results)
    opt_evaluations = apply_streams(evaluations, stream_results)
    opt_task = task_from_domain_problem(domain, get_problem(opt_evaluations, goal_expression, domain, unit_costs))
    function_assignments = {fact.fluent: fact.expression for fact in opt_task.init  # init_facts
                            if isinstance(fact, pddl.f_expression.FunctionAssignment)}
    type_to_objects = instantiate.get_objects_by_type(opt_task.objects, opt_task.types)
    results_from_head = get_results_from_head(opt_evaluations)
    action_instances = instantiate_actions(opt_task, type_to_objects, function_assignments, action_plan)
    negative_from_name = get_negative_predicates(negative)
    axioms_from_name = get_derived_predicates(opt_task.axioms)

    opt_task.init = set(opt_task.init)
    real_states = [set(real_task.init)] # TODO: had old way of doing this (~July 2018)
    preimage_plan = []
    function_plan = set()
    for layer in action_instances:
        for pair, action_instance in layer:
            axiom_plan = extract_axiom_plan(opt_task, action_instance, negative_from_name,
                                            static_state=real_states[-1])
            if axiom_plan is None:
                continue
            simplify_conditional_effects(real_states[-1], opt_task.init, action_instance, axioms_from_name)
            preimage_plan.extend(axiom_plan + [action_instance])
            apply_action(opt_task.init, action_instance)
            real_states.append(set(real_states[-1]))
            apply_action(real_states[-1], action_instance)
            if not unit_costs and (pair is not None):
                function_result = extract_function_results(results_from_head, *pair)
                if function_result is not None:
                    function_plan.add(function_result)
            break
        else:
            raise RuntimeError('No action instances are applicable')

    # TODO: could instead just accumulate difference between real and opt
    full_preimage = plan_preimage(preimage_plan, [])
    stream_preimage = set(full_preimage) - real_states[0]
    negative_preimage = set(filter(lambda a: a.predicate in negative_from_name, stream_preimage))
    positive_preimage = stream_preimage - negative_preimage
    function_plan.update(convert_negative(negative_preimage, negative_from_name, full_preimage, real_states))

    step_from_fact = {fact_from_fd(l): full_preimage[l] for l in positive_preimage if not l.negated}
    target_facts = list(step_from_fact.keys())
    #stream_plan = reschedule_stream_plan(evaluations, target_facts, domain, stream_results)
    stream_plan = []
    extract_stream_plan(node_from_atom, target_facts, stream_plan)
    stream_plan = prune_stream_plan(evaluations, stream_plan, target_facts)
    stream_plan = convert_fluent_streams(stream_plan, real_states, step_from_fact, node_from_atom)
    # visualize_constraints(map(fact_from_fd, stream_preimage))

    if DO_RESCHEDULE: # TODO: detect this based on unique or not
        # TODO: maybe test if partial order between two ways of achieving facts, if not prune
        new_stream_plan = reschedule_stream_plan(evaluations, target_facts, domain, stream_plan)
        if new_stream_plan is not None:
            stream_plan = new_stream_plan
    return stream_plan + list(function_plan)