Ejemplo n.º 1
0
def test_stochastic_adaptive_solver(caplog):
    """test using an adaptive, stochastic solver"""
    field = ScalarField.random_uniform(UnitGrid([16]), -1, 1)
    eq = DiffusionPDE(noise=1e-6)

    with caplog.at_level(logging.WARNING):
        solver = ExplicitSolver(eq, backend="numpy", adaptive=True)

    c = Controller(solver, t_range=1, tracker=None)
    c.run(field, dt=1e-2)

    assert "fixed" in caplog.text
Ejemplo n.º 2
0
def test_no_dt():
    """ test scipy solver without timestep """
    grid = UnitGrid([16])
    field = ScalarField.random_uniform(grid, -1, 1)
    eq = DiffusionPDE()

    c1 = Controller(ScipySolver(eq), t_range=1, tracker=None)
    s1 = c1.run(field, dt=1e-3)

    c2 = Controller(ScipySolver(eq), t_range=1, tracker=None)
    s2 = c2.run(field)

    np.testing.assert_allclose(s1.data, s2.data, rtol=1e-3, atol=1e-3)
Ejemplo n.º 3
0
def test_compare_solvers(solver_class):
    """compare several solvers"""
    field = ScalarField.random_uniform(UnitGrid([8, 8]), -1, 1)
    eq = DiffusionPDE()

    # ground truth
    c1 = Controller(ExplicitSolver(eq, scheme="runge-kutta"), t_range=0.1, tracker=None)
    s1 = c1.run(field, dt=5e-3)

    c2 = Controller(solver_class(eq), t_range=0.1, tracker=None)
    with np.errstate(under="ignore"):
        s2 = c2.run(field, dt=5e-3)

    np.testing.assert_allclose(s1.data, s2.data, rtol=1e-2, atol=1e-2)
def test_compare_explicit():
    """ test explicit solvers """
    grid = UnitGrid([16, 16])
    field = ScalarField.random_uniform(grid, -1, 1)
    eq = DiffusionPDE()

    c1 = Controller(ExplicitSolver(eq), t_range=0.1, tracker=None)
    s1 = c1.run(field, dt=2e-3)

    c2 = Controller(ExplicitSolver(eq, scheme="runge-kutta"), t_range=0.1, tracker=None)
    with np.errstate(under="ignore"):
        s2 = c2.run(field, dt=2e-3)

    np.testing.assert_allclose(s1.data, s2.data, rtol=1e-2, atol=1e-2)
def test_stochastic_solvers(backend):
    """ test simple version of the stochastic solver """
    field = ScalarField.random_uniform(UnitGrid([16]), -1, 1)
    eq = DiffusionPDE()
    seq = DiffusionPDE(noise=1e-6)

    solver1 = ExplicitSolver(eq, backend=backend)
    c1 = Controller(solver1, t_range=1, tracker=None)
    s1 = c1.run(field, dt=1e-3)

    solver2 = ExplicitSolver(seq, backend=backend)
    c2 = Controller(solver2, t_range=1, tracker=None)
    s2 = c2.run(field, dt=1e-3)

    np.testing.assert_allclose(s1.data, s2.data, rtol=1e-4, atol=1e-4)
    assert not solver1.info["stochastic"]
    assert solver2.info["stochastic"]
Ejemplo n.º 6
0
def test_solvers_simple_ode(scheme, adaptive):
    """test explicit solvers with a simple ODE"""
    grid = UnitGrid([1])
    field = ScalarField(grid, 1)
    eq = PDE({"y": "2*sin(t) - y"})

    dt = 1e-3 if scheme == "euler" else 1e-2

    storage = MemoryStorage()
    solver = ExplicitSolver(eq, scheme=scheme, adaptive=adaptive)
    controller = Controller(solver, t_range=20.0, tracker=storage.tracker(1))
    controller.run(field, dt=dt)

    ts = np.ravel(storage.times)
    expect = 2 * np.exp(-ts) - np.cos(ts) + np.sin(ts)
    np.testing.assert_allclose(np.ravel(storage.data), expect, atol=0.05)

    if adaptive:
        assert solver.info["steps"] < 20 / dt
    else:
        assert solver.info["steps"] == pytest.approx(20 / dt, abs=1)
Ejemplo n.º 7
0
def test_solvers_simple_example(scheme, adaptive):
    """test explicit solvers"""
    grid = UnitGrid([4])
    field = ScalarField(grid, 1)
    eq = PDE({"c": "c"})

    dt = 1e-3 if scheme == "euler" else 1e-2

    solver = ExplicitSolver(eq, scheme=scheme, adaptive=adaptive)
    controller = Controller(solver, t_range=10.0, tracker=None)
    res = controller.run(field, dt=dt)
    np.testing.assert_allclose(res.data, np.exp(10), rtol=0.1)
    if adaptive:
        assert solver.info["steps"] != pytest.approx(10 / dt, abs=1)
    else:
        assert solver.info["steps"] == pytest.approx(10 / dt, abs=1)
Ejemplo n.º 8
0
def test_solvers_complex(backend):
    """test solvers with a complex PDE"""
    r = FieldCollection.scalar_random_uniform(2, UnitGrid([3]), labels=["a", "b"])
    c = r["a"] + 1j * r["b"]
    assert c.is_complex

    # assume c = a + i * b
    eq_c = PDE({"c": "-I * laplace(c)"})
    eq_r = PDE({"a": "laplace(b)", "b": "-laplace(a)"})
    res_r = eq_r.solve(r, t_range=1e-2, dt=1e-3, backend="numpy", tracker=None)
    exp_c = res_r[0].data + 1j * res_r[1].data

    for solver_class in [ExplicitSolver, ImplicitSolver, ScipySolver]:
        solver = solver_class(eq_c, backend=backend)
        controller = Controller(solver, t_range=1e-2, tracker=None)
        res_c = controller.run(c, dt=1e-3)
        np.testing.assert_allclose(res_c.data, exp_c, rtol=1e-3, atol=1e-3)