Ejemplo n.º 1
0
def get_statistics(X, y):
    """
    ================
    INPUT: array of X data (temperature), array of Y data (heat flow), int
    OUTPUT: float, float, float, float, tuple
    ================

    Returns four key release characteristics:
    1. Enthalpy
    2. Peak heat flow
    3. Temperature at peak
    4. Rough standard deviation of peak
    5. Onset and end points

    """

    peak_X, peak_y = pdetect.get_peak_X_y(X, y)

    enthalpy = get_enthalpy(X, y)

    peak_heat_flow = np.min(peak_y) # find the minimum y

    peak_temp = peak_X[np.argmin(peak_y)] # find the x for which y is minimized

    heat_flow_std = np.std(peak_y)

    onset, end = pdetect.get_points_coordinates(X, y)

    return enthalpy, peak_heat_flow, peak_temp, heat_flow_std, (onset, end)
Ejemplo n.º 2
0
def fit_line(X, y):
    """
    ================
    INPUT: array of X data (temperature), array of Y data (heat flow)
    OUTPUT: array of X data (temperature), array of Y data (best-fit-line heat
    flow)
    ================

    Returns two arrays, of the x's and y's of the best-fit-line.

    """
    peak_X, peak_y = pdetect.get_peak_X_y(X, y)
    onset_point, end_point = pdetect.get_points(X, y)
    (x_0, y_0), (x_1, y_1) = pdetect.get_points_coordinates(X, y)

    line_X, line_y = construct_line(x_0,
                                    y_0,
                                    x_1,
                                    y_1,
                                    peak_X
                                   )
    return line_X, line_y
Ejemplo n.º 3
0
def process_data(filepath, plot = False):
    """
    ================
    INPUT: string (filepath), boolean
    OUTPUT: several statistics, and a plot if "plot" parameter is True
    ================

    Returns enthalpy about the data, and plots it, the endpoints and the
    line if you want (as well as statistics)

    """

    # clean the data
    data = fh.clean_file(filepath)

    #find the first number in the filename and use as the title
    name_of_preparation = fh.get_file_title(filepath)

    # ensure that the data is formatted correctly, as arrays
    temp, heat_flow = np.array(data.temp), np.array(data.heat_flow)

    # generate statistics
    e, hf, t, sd, (onset_point, end_point) = pstats.get_statistics(temp, heat_flow)

    statistics_text = """=== Preparation {0} ===
    Enthalpy: {1}
    Peak Heat Flow: {2}
    Peak Temperature: {3}
    Heat Flow Standard Devation: {4}
    Onset point: {5}, {6}
    End point: {7}, {8}
    """.format(name_of_preparation,
               round(e, 3),
               round(hf, 3),
               round(t, 2),
               round(sd, 4),
               round(onset_point[0], 2),
               round(onset_point[1], 3),
               round(end_point[0], 2),
               round(end_point[1], 3)
               )

    if plot:
        # get line for plotting
        line_X, line_y = pstats.fit_line(temp, heat_flow)

        # get onset and end points
        (x0, y0), (x1, y1) = pdetect.get_points_coordinates(temp, heat_flow)

        # set up plot
        fig, ax = plt.subplots(1)
        ax.set_title("Preparation {}".format(name_of_preparation))
        ax.set_xlabel("Temperature")
        ax.set_ylabel("Heat Flow")
        ax.annotate(statistics_text,
                    xy=(0.5, 0.4),
                    xycoords='axes fraction'
                    )

        # plot original data
        plt.plot(temp,
               heat_flow,
               color = 'black',
               label = "Original data"
              )

        # plot best fit line
        plt.plot(line_X,
               line_y,
               color = 'red',
               label = "Best fit line"
              )

        # plot onset point
        plt.scatter(x0,
                  y0,
                  color = 'green',
                  label = 'Onset: {}, {}'.format(round(x0,2), round(y0, 2))
                 )

        # plot end point
        plt.scatter(x1,
                  y1,
                  color = 'purple',
                  label = 'End: {}, {}'.format(round(x1, 2), round(y1, 2))
                 )
        plt.legend()
        plt.show()

    return e # this is short for enthalpy, as defined above
Ejemplo n.º 4
0
def process_data(filepath, plot=False):
    """
    ================
    INPUT: string (filepath), boolean
    OUTPUT: several statistics, and a plot if "plot" parameter is True
    ================

    Returns enthalpy about the data, and plots it, the endpoints and the
    line if you want (as well as statistics)

    """

    # clean the data
    data = fh.clean_file(filepath)

    #find the first number in the filename and use as the title
    name_of_preparation = fh.get_file_title(filepath)

    # ensure that the data is formatted correctly, as arrays
    temp, heat_flow = np.array(data.temp), np.array(data.heat_flow)

    # generate statistics
    e, hf, t, sd, (onset_point,
                   end_point) = pstats.get_statistics(temp, heat_flow)

    statistics_text = """=== Preparation {0} ===
    Enthalpy: {1}
    Peak Heat Flow: {2}
    Peak Temperature: {3}
    Heat Flow Standard Devation: {4}
    Onset point: {5}, {6}
    End point: {7}, {8}
    """.format(name_of_preparation, round(e, 3), round(hf, 3), round(t, 2),
               round(sd, 4), round(onset_point[0], 2),
               round(onset_point[1], 3), round(end_point[0], 2),
               round(end_point[1], 3))

    if plot:
        # get line for plotting
        line_X, line_y = pstats.fit_line(temp, heat_flow)

        # get onset and end points
        (x0, y0), (x1, y1) = pdetect.get_points_coordinates(temp, heat_flow)

        # set up plot
        fig, ax = plt.subplots(1)
        ax.set_title("Preparation {}".format(name_of_preparation))
        ax.set_xlabel("Temperature")
        ax.set_ylabel("Heat Flow")
        ax.annotate(statistics_text, xy=(0.5, 0.4), xycoords='axes fraction')

        # plot original data
        plt.plot(temp, heat_flow, color='black', label="Original data")

        # plot best fit line
        plt.plot(line_X, line_y, color='red', label="Best fit line")

        # plot onset point
        plt.scatter(x0,
                    y0,
                    color='green',
                    label='Onset: {}, {}'.format(round(x0, 2), round(y0, 2)))

        # plot end point
        plt.scatter(x1,
                    y1,
                    color='purple',
                    label='End: {}, {}'.format(round(x1, 2), round(y1, 2)))
        plt.legend()
        plt.show()

    return e  # this is short for enthalpy, as defined above