("step", "step", 8631697, 0), ("box", "box2", 5521451, 0), ("transit", "transit", 8505215, 0), ] fig, axes = pl.subplots(2, 2, figsize=(8, 8)) os.makedirs("cache", exist_ok=True) for a, ax, (disp, name, kicid, peak_id) in zip("abcd", axes.flatten(), models): fn = os.path.join("cache", "{0}.pkl".format(kicid)) if os.path.exists(fn): print("using cached file: {0}".format(fn)) with open(fn, "rb") as f: results = pickle.load(f) else: results = search((kicid, None), detect_thresh=15, verbose=True, all_models=True) with open(fn, "wb") as f: pickle.dump(results, f, -1) peak = results.peaks[peak_id] t0 = peak["transit_time"] rng = t0 + np.array([-2, 2]) gp, y0 = peak["gps"][name] x, y = peak["data"][:2] m = (rng[0] < x) & (x < rng[1]) x0 = np.linspace(rng[0], rng[1], 500) ax.plot(24 * (x[m] - t0), y[m], ".", color=COLORS["DATA"]) mu = gp.predict(y0, x0, return_cov=False) ax.plot(24 * (x0 - t0), mu, color=COLORS["MODEL_2"], lw=2.5, alpha=0.8)
import numpy as np import matplotlib.pyplot as pl from peerless.search import search kicid = 8505215 # kicid = 10842718 # kicid = 10287723 # kicid = 6551440 fn = os.path.join("cache", "init-{0}.pkl".format(kicid)) if os.path.exists(fn): print("using cached file: {0}".format(fn)) with open(fn, "rb") as f: results = pickle.load(f) else: results = search((kicid, None), verbose=True, delete=False) with open(fn, "wb") as f: pickle.dump(results, f, -1) fig, ax = pl.subplots(1, 1, figsize=(8, 4)) ax.plot(results.search_time, results.search_scalar, color=COLORS["DATA"]) ax.plot(results.search_time, results.search_background, color=COLORS["MODEL_2"]) ax.plot(results.search_time, results.detect_thresh * results.search_background, color=COLORS["MODEL_2"], ls="dashed") ax.set_xlim(results.search_time.min(), results.search_time.max()) fig.savefig("initial_candidates.pdf", bbox_inches="tight")
import os import pickle import numpy as np import matplotlib.pyplot as pl from peerless.search import search kicid = 8505215 # kicid = 10842718 # kicid = 10287723 # kicid = 6551440 fn = os.path.join("cache", "init-{0}.pkl".format(kicid)) if os.path.exists(fn): print("using cached file: {0}".format(fn)) with open(fn, "rb") as f: results = pickle.load(f) else: results = search((kicid, None), verbose=True, delete=False) with open(fn, "wb") as f: pickle.dump(results, f, -1) fig, ax = pl.subplots(1, 1, figsize=(8, 4)) ax.plot(results.search_time, results.search_scalar, color=COLORS["DATA"]) ax.plot(results.search_time, results.search_background, color=COLORS["MODEL_2"]) ax.plot(results.search_time, results.detect_thresh*results.search_background, color=COLORS["MODEL_2"], ls="dashed") ax.set_xlim(results.search_time.min(), results.search_time.max()) fig.savefig("initial_candidates.pdf", bbox_inches="tight")
("box", "box1", 9411471, 0), # ("box", "box2", 5521451, 0), ("transit", "transit", 8505215, 0), ] fig, axes = pl.subplots(2, 2, figsize=(8.8, 8)) os.makedirs("cache", exist_ok=True) for a, ax, (disp, name, kicid, peak_id) in zip("abcd", axes.flatten(), models): fn = os.path.join("cache", "{0}.pkl".format(kicid)) if os.path.exists(fn): print("using cached file: {0}".format(fn)) with open(fn, "rb") as f: results = pickle.load(f) else: results = search((kicid, None), detect_thresh=15, verbose=True, all_models=True) with open(fn, "wb") as f: pickle.dump(results, f, -1) peak = results.peaks[peak_id] t0 = peak["transit_time"] gp, y0 = peak["gps"][name] if disp == "step": t0 = gp.mean["t0"] elif disp == "box": t0 = 0.5 * (gp.mean.mn + gp.mean.mx) rng = t0 + np.array([-2, 2]) x, y = peak["data"][:2] m = (rng[0] < x) & (x < rng[1]) x0 = np.linspace(rng[0], rng[1], 500)