Ejemplo n.º 1
0
def test_negative_residues():
    """
    Checks if we raise an error, if we encounter a PDB with residue numbers < 1.
    """
    file = os.path.join(test_path, "checker", "negative_residues.pdb")

    with pytest.raises(custom_errors.IncorrectResidueNumbers):
        pdb_checker.PDBChecker(file).check_negative_residues()
Ejemplo n.º 2
0
def test_protonation_error():
    """
    Checks if we catch unprotonated systems and raise an error.
    """
    file = os.path.join(constants.DIR, "Examples",
                        "preparation/6qmk_correct.pdb")

    with pytest.raises(custom_errors.ProtonationError):
        pdb_checker.PDBChecker(file).check_protonation()
Ejemplo n.º 3
0
def test_full_execution():
    """
    Runs the full workflow.
    """
    file = os.path.join(test_path, "checker", "capped_no_connects.pdb")
    expected_output = os.path.join(os.getcwd(), "capped_no_connects_fixed.pdb")

    checker = pdb_checker.PDBChecker(file)
    checker.check()
    assert os.path.isfile(expected_output)

    os.remove(expected_output)
Ejemplo n.º 4
0
def test_missing_connects_error():
    """
    Checks if we raise an warning when PDB file is missing CONECT lines and create a new file with Schrodinger.
    """
    file = os.path.join(test_path, "constraints", "no_connects.pdb")
    expected_output = os.path.join(test_path, "constraints",
                                   "no_connects_conect.pdb")

    with pytest.warns(UserWarning):
        pdb_checker.PDBChecker(file).check_conects()

    assert os.path.exists(expected_output)
    os.remove(expected_output)
Ejemplo n.º 5
0
def test_capped_termini():
    """
    Checks if the platform correctly removes capped termini.
    """
    file = os.path.join(test_path, "checker", "capped.pdb")

    checker = pdb_checker.PDBChecker(file)
    output = checker.remove_capped_termini()

    with open(output, "r") as f:
        content = f.read()
        assert "ACE" not in content
        assert "NMA" not in content

    os.remove(output)
Ejemplo n.º 6
0
def run_adaptive(args: YamlParser):
    """
    Main function to prepare and launch the simulation.

    1) Create Parameters - variables, folders, logger...
    2) Prepare ligand and receptor
    3) Launch simulation
    4) Analyse simulation
    """
    builder = ParametersBuilder()
    parameters = builder.build_adaptive_variables(args)
    parameters.create_files_and_folders()
    shutil.copy(args.yamlfile, parameters.pele_dir)
    missing_residues = []

    if parameters.adaptive_restart and not parameters.only_analysis:
        with helpers.cd(parameters.pele_dir):
            adaptiveSampling.main(parameters.ad_ex_temp)
            parameters.logger.info("Simulation run successfully (:\n\n")
        args.adaptive_restart = False

    elif not parameters.only_analysis and not parameters.restart:
        parameters.logger.info(
            "System: {}; Platform Functionality: {}\n\n".format(
                parameters.residue, parameters.software))

        pdb_checker.PDBChecker(parameters.system).check_negative_residues()

        # Create inputs directory
        if not os.path.exists(parameters.inputs_dir):
            os.mkdir(parameters.inputs_dir)

        if parameters.perturbation:
            syst = sp.SystemBuilder.build_system(
                parameters.system,
                args.mae_lig,
                args.residue,
                parameters.pele_dir,
                inputs_dir=parameters.inputs_dir)
        else:
            syst = sp.SystemBuilder(parameters.system,
                                    None,
                                    None,
                                    parameters.pele_dir,
                                    inputs_dir=parameters.inputs_dir)

        parameters.logger.info("Prepare complex {}".format(syst.system))

        # If user overrides 'system' with 'input'
        if parameters.input:
            parameters.inputs_simulation = []

            for input in parameters.input:
                input_path = os.path.join(parameters.inputs_dir,
                                          os.path.basename(input))
                shutil.copy(input, input_path)

                if parameters.no_ppp:
                    input_proc = input_path
                else:
                    input_proc, missing_residues, _, _, _ = ppp.main(
                        input_path,
                        parameters.
                        inputs_dir,  # to ensure it goes to pele_dir/inputs, not pele_dir
                        output_pdb=[
                            "",
                        ],
                        charge_terminals=args.charge_ter,
                        no_gaps_ter=args.gaps_ter,
                        constrain_smiles=None,
                        ligand_pdb=parameters.ligand_ref)
                input_proc = os.path.basename(input_proc)
                input_proc = os.path.join(parameters.inputs_dir, input_proc)
                parameters.inputs_simulation.append(input_proc)
            parameters.adap_ex_input = ", ".join([
                '"' + input + '"' for input in parameters.inputs_simulation
            ]).strip('"')

        # If randomization in necessary (PPI, site_finder, global exploration)...
        elif args.full or args.randomize or args.ppi or args.site_finder:
            ligand_positions, box_radius, box_center = rd.randomize_starting_position(
                parameters, args.box_center, args.box_radius)

            if parameters.no_ppp:
                receptor = syst.system
            else:
                receptor, missing_residues, _, _, _ = ppp.main(
                    syst.system,
                    parameters.
                    inputs_dir,  # to ensure it goes to pele_dir/input, not pele_dir
                    output_pdb=[
                        "",
                    ],
                    charge_terminals=args.charge_ter,
                    no_gaps_ter=args.gaps_ter,
                    constrain_smiles=None,
                    ligand_pdb=parameters.ligand_ref)

            inputs = rd.join(receptor,
                             ligand_positions,
                             parameters.residue,
                             output_folder=parameters.inputs_dir)

            parameters.input = [
                os.path.join(parameters.inputs_dir, inp) for inp in inputs
            ]

            if args.gpcr_orth or args.out_in:
                randomization_box_radius, randomization_box_center = rd.set_box(
                    args.final_site if args.final_site else
                    args.orthosteric_site, ligand_positions, parameters.system)

                if not args.box_center:
                    parameters.box_center = randomization_box_center
                if not args.box_radius:
                    parameters.box_radius = randomization_box_radius

            else:
                parameters.box_center = box_center
                parameters.box_radius = box_radius

            parameters.adap_ex_input = ", ".join(
                ['"' + input + '"' for input in parameters.input]).strip('"')
            hp.silentremove(ligand_positions)

        # Prepare System
        if parameters.no_ppp or parameters.input:  # No need to run system through PPP, if we already preprocessed
            # parameters.input
            if parameters.input:
                # If we have more than one input
                for input in parameters.input:
                    try:
                        shutil.copy(input, parameters.inputs_dir)
                    except shutil.SameFileError:  # systems that go through randomization are already moved
                        pass
            else:
                shutil.copy(parameters.system, parameters.inputs_dir)
        else:
            parameters.nonstandard.extend(hp.find_nonstd_residue(syst.system))
            parameters.system, missing_residues, _, _, _ = ppp.main(
                syst.system,
                parameters.inputs_dir,
                output_pdb=[
                    "",
                ],
                charge_terminals=args.charge_ter,
                no_gaps_ter=args.gaps_ter,
                mid_chain_nonstd_residue=parameters.nonstandard,
                skip=parameters.skip_prep,
                back_constr=parameters.ca_constr,
                constrain_smiles=None,
                ligand_pdb=parameters.ligand_ref,
                ca_interval=parameters.ca_interval)

        parameters.constraints = alpha_constraints.retrieve_constraints(
            parameters.system,
            interval=parameters.ca_interval,
            back_constr=parameters.ca_constr,
            ter_constr=parameters.terminal_constr)

        # Metal constraints
        if not args.no_metal_constraints:
            metal_constraints, parameters.external_constraints = mc.main(
                args.external_constraints,
                os.path.join(
                    parameters.inputs_dir,
                    parameters.adap_ex_input.split(",")[0].strip().strip('"')),
                syst.system,
                permissive=parameters.permissive_metal_constr,
                all_metals=args.constrain_all_metals,
                external=parameters.external_constraints,
                logger=parameters.logger)

            parameters.external_constraints = hp.retrieve_constraints_for_pele(
                parameters.external_constraints, parameters.system)

            metal_constraints_json = hp.retrieve_constraints_for_pele(
                metal_constraints,
                os.path.join(
                    parameters.inputs_dir,
                    parameters.adap_ex_input.split(",")[0].strip().strip('"')))

            parameters.external_constraints.extend(metal_constraints_json)

        else:
            parameters.external_constraints = hp.retrieve_constraints_for_pele(
                parameters.external_constraints, parameters.system)

        # Keep JSON ordered by having first title and then constraints
        if parameters.external_constraints:
            parameters.constraints = (parameters.constraints[0:1] +
                                      parameters.external_constraints +
                                      parameters.constraints[1:])
        if parameters.remove_constraints:
            parameters.constraints = ""

        parameters.logger.info(f"Complex {parameters.system} prepared\n\n")

        # Ligand/metal and solvent parameters
        if (parameters.perturbation or
                parameters.sidechain_perturbation) and parameters.use_peleffy:
            ligand_parametrizer = parametrizer.Parametrizer.from_parameters(
                parameters)
            ligand_parametrizer.parametrize_ligands_from(
                pdb_file=syst.system, ppp_file=parameters.system)

        elif (parameters.perturbation or parameters.sidechain_perturbation
              ) and not parameters.use_peleffy:
            # Parametrize the ligand
            ligand_params = lg.LigandParametrization(parameters)
            ligand_params.generate()

            # Parametrize missing residues identified by PPP
            for res, __, _ in missing_residues:
                if res != args.residue and res not in parameters.skip_ligand_prep:
                    parameters.logger.info(
                        "Creating template for residue {}".format(res))
                    with hp.cd(parameters.pele_dir):
                        mr.create_template(parameters, res)
                    parameters.logger.info(
                        "Template {}z created\n\n".format(res))

        # Covalent residue parametrization should not run in refinement simulation
        if parameters.covalent_residue and os.path.basename(
                parameters.pele_dir) != "2_refinement":
            parametrizer.parametrize_covalent_residue(
                parameters.pele_data,
                parameters.pele_dir,
                parameters.gridres,
                parameters.residue_type,
                parameters.residue,
                ppp_system=parameters.system)

        if parameters.ligand_conformations:
            ligand_conformations.LigandConformations(
                path=parameters.ligand_conformations,
                system=parameters.system,
                resname=parameters.residue,
                forcefield=parameters.forcefield,
                pele_dir=parameters.pele_dir).generate()

        # Create simulation box, if performing perturbation
        if parameters.perturbation and parameters.box:
            box = bx.BoxSetter(parameters.box_center, parameters.box_radius,
                               parameters.ligand_ref, parameters.logger)
            parameters.box = box.generate_json()
        else:
            parameters.box = ""

        # Solvent parameters
        solvent = sv.ImplicitSolvent(
            parameters.solvent,
            parameters.obc_tmp,
            parameters.template_folder,
            parameters.obc_file,
            parameters.logger,
        )
        solvent.generate()

        # Build PCA
        if parameters.pca_traj:
            pca_obj = pca.PCA(parameters.pca_traj, parameters.pele_dir)
            parameters.pca = pca_obj.generate(parameters.logger)

        # Core constraints based on SMILES string
        if parameters.constrain_core:
            smiles_input_pdb = os.path.join(
                parameters.inputs_dir,
                parameters.adap_ex_input.split(",")[0])
            smiles = smiles_constraints.SmilesConstraints(
                smiles_input_pdb, parameters.constrain_core,
                parameters.residue, parameters.chain,
                parameters.constrain_core_spring)
            smi_constraint = smiles.run()
            parameters.constraints = (parameters.constraints[0:1] +
                                      smi_constraint +
                                      parameters.constraints[1:])

        # Waters
        input_waters = [
            input.strip().strip('"')
            for input in parameters.adap_ex_input.split(",")
        ]
        input_waters = [
            os.path.join(parameters.inputs_dir, inp) for inp in input_waters
        ]
        water_obj = wt.WaterIncluder(
            input_waters,
            parameters.n_waters,
            user_waters=parameters.waters,
            ligand_perturbation_params=parameters.parameters,
            water_center=args.water_center,
            water_radius=parameters.water_radius,
            allow_empty_selectors=parameters.allow_empty_selectors,
            water_temp=parameters.water_temp,
            water_trials=parameters.water_trials,
            water_overlap=parameters.water_overlap,
            water_constr=parameters.water_constr,
            test=parameters.test,
            water_freq=parameters.water_freq,
            ligand_residue=parameters.residue)
        water_obj.run()
        parameters.parameters = water_obj.ligand_perturbation_params
        parameters.water_ids_to_track = water_obj.water_ids_to_track

        # Check if atoms need mapping due to preprocessing
        args = AtomMapper(args, parameters, syst.system).run()

        # Metrics builder - builds JSON strings for PELE to be able to
        # track atom distances, RMSD, etc.
        metrics = mt.MetricBuilder()
        parameters.metrics = (metrics.distance_to_atom_json(
            os.path.join(
                parameters.inputs_dir,
                parameters.adap_ex_input.split(",")[0].strip().strip('"'),
            ),
            args.atom_dist,
        ) if args.atom_dist else "")
        parameters.native = (metrics.rmsd_to_json(
            args.native, parameters.chain) if args.native else "")

        parameters.local_nonbonding_energy = metrics.local_nonbonding_energy_json(
            parameters.covalent_residue, parameters.nonbonding_radius)

        # metal polarisation
        if parameters.polarize_metals:
            mp.change_metal_charges(
                parameters.template_folder,
                parameters.forcefield,
                parameters.polarization_factor,
                parameters.system,
            )

        # Predict cluster values in a short equilibration
        if parameters.cluster_conditions == "auto":
            preequilibration = PreEquilibrator(args, parameters)
            parameters.cluster_conditions = preequilibration.run()

        # Point adaptive.conf to input dir
        parameters.adap_ex_input = os.path.join(parameters.inputs_dir,
                                                parameters.adap_ex_input)

        # Fill in simulation templates
        adaptive = ad.SimulationBuilder(parameters.ad_ex_temp,
                                        parameters.pele_exit_temp,
                                        parameters.topology)
        adaptive.generate_inputs(parameters, water_obj)

        # Run simulation only if we are not in debug mode
        if not parameters.debug:
            parameters.logger.info("Running Simulation")
            adaptive.run()
            parameters.logger.info("Simulation run successfully (:\n\n")

    elif parameters.restart and not parameters.only_analysis:
        # Start simulation from scratch (unlike adaptive_restart) but use files created in debug mode
        parameters.logger.info(
            f"Launching simulation from {parameters.pele_dir}")
        adaptive = ad.SimulationBuilder(parameters.ad_ex_temp,
                                        parameters.pele_exit_temp,
                                        parameters.topology)
        adaptive.run()
        parameters.logger.info("Simulation run successfully (:\n\n")

    # Run analysis
    if parameters.analyse and not parameters.debug:
        from pele_platform.analysis import Analysis

        # Retrieve water IDs to track from existing pele.conf, if running analysis only
        if parameters.only_analysis:
            parameters.water_ids_to_track = wt.water_ids_from_conf(
                parameters.pele_temp)

        analysis_folder = os.path.join(parameters.pele_dir, "results")

        analysis = Analysis.from_parameters(parameters)
        analysis.generate(
            analysis_folder,
            clustering_type=parameters.clustering_method.lower(),
            bandwidth=parameters.bandwidth,
            analysis_nclust=parameters.analysis_nclust,
            max_top_clusters=parameters.max_top_clusters,
            min_population=parameters.min_population,
            max_top_poses=parameters.max_top_poses,
            top_clusters_criterion=parameters.top_clusters_criterion,
            representatives_criterion=parameters.
            cluster_representatives_criterion)

    return parameters