def yder_6th(f,dy,x=[],y=[],z=[],param=[],dim=[]):

    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    if not param:
        param=read_param(quiet=True)
    if not dim:
        dim=read_dim()

    if len(y) < 1:
        gd  = read_grid(quiet=True)
        y = gd.y
    dy=N.gradient(y)
    if (dim.ny!=1):
        dy2 = 1./(60.*dy)
    dfdy = N.zeros_like(f)
    m1 = 3
    m2 = f.shape[-2]-3

    if (m2 > m1 and dim.ny != 1):
        for m in range(m1,m2):
            dfdy[...,m,:] = dy2[m]*( +45.*(f[...,m+1,:]-f[...,m-1,:]) 
                                      -9.*(f[...,m+2,:]-f[...,m-2,:]) 
                                      +   (f[...,m+3,:]-f[...,m-3,:]) )
    else:
        dfdy = 0.
    if param.coord_system == ('cylindric' or 'spherical'):
        if len(x) < 1:
            gd=read_grid(quiet=True)
            x=gd.x
        dfdy /= x
        
    return dfdy
def zder_6th(f,dz,x=[],y=[],z=[],run2D=False,param=[],dim=[]):
    
    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    if not param:
        param=read_param(quiet=True)
    if not dim:
        dim=read_dim()

    if len(z) < 1:
        gd  = read_grid(quiet=True)
        z = gd.z
    dz=N.gradient(z)
    if (dim.nz!=1):
        dz2 = 1./(60.*dz)
    dfdz = N.zeros_like(f)

    n1 = 3
    if run2D:
        n2 = f.shape[1]-3
    else:
        n2 = f.shape[-3]-3

    if (n2 > n1 and dim.nz!=1):
        if (run2D):
            # f[...,z,x] or f[...,z,y]
            for n in range(n1,n2):
                dfdz[...,n,:] = dz2[n]*(+45.*(f[...,n+1,:]-f[...,n-1,:])
                                         -9.*(f[...,n+2,:]-f[...,n-2,:])
                                            +(f[...,n+3,:]-f[...,n-3,:]) )

        else:
            # f[...,z,y,x]
            for n in range(n1,n2):
                dfdz[...,n,:,:] = dz2[n]*(+45.*(f[...,n+1,:,:]-f[...,n-1,:,:])
                                           -9.*(f[...,n+2,:,:]-f[...,n-2,:,:])
                                              +(f[...,n+3,:,:]-f[...,n-3,:,:]) )
    else:
        dfdz=0
    if param.coord_system == 'spherical':
        if (len(x) or len(y)) < 1:
            gd=read_grid(quiet=True)
            x=gd.x; y=gd.y
        sin_y = N.sin(y)
        siny1 = 1./sin_y
        i_sin = N.where(N.abs(sin_y) < 1e-5)[0]
        if i_sin.size > 0:
            siny1[i_sin] = 0.
        x_1, sin1th = N.meshgrid(1./x, siny1)
        dfdz *= x_1*sin1th

    return dfdz
Ejemplo n.º 3
0
def div(f,dx,dy,dz,x=[],y=[],z=[],param=[],dim=[]):
    """
    take divergence of pencil code vector array
    """
    if (f.ndim != 4):
        print("div: must have vector 4-D array f[mvar,mz,my,mx] for divergence")
        raise ValueError
    if not param:
        param = read_param(quiet=True)
    if not dim:
        dim = read_dim()
    gd  = read_grid(quiet=True, param=param)
    if len(x) < 1:
        x = gd.x
        y = gd.y
        z = gd.z

    div = xder(f[0,...],dx,x=x,y=y,z=z,param=param,dim=dim) +\
          yder(f[1,...],dy,x=x,y=y,z=z,param=param,dim=dim) +\
          zder(f[2,...],dz,x=x,y=y,z=z,param=param,dim=dim)

    if param.coord_system == 'cylindric':
        div += f[0,...]/x
    if param.coord_system == 'spherical':
        sin_y = N.sin(y)
        cos_y = N.cos(y)
        i_sin = N.where(N.abs(sin_y) < 1e-5)[0]
        if i_sin.size > 0:
            cos_y[i_sin] = 0.; sin_y[i_sin] = 1
        x_1, cotth = N.meshgrid(1./gd.x, cos_y/sin_y)
        div += 2*f[0,...]*x_1 + f[1,...]*x_1*cotth
   
    return div
Ejemplo n.º 4
0
def del2(f,dx,dy,dz,x=[],y=[],z=[]):
    """taken from pencil code's sub.f90 
    !  calculate del6 (defined here as d^6/dx^6 + d^6/dy^6 + d^6/dz^6, rather
    !  than del2^3) of a scalar for hyperdiffusion
    Duplcation of laplacian why? Fred - added curvelinear
    """
    param = read_param(quiet=True)
    gd  = read_grid(quiet=True)
    if len(x) < 1:
        x = gd.x
    if len(y) < 1:
        y = gd.y
    if len(z) < 1:
        z = gd.z

    del2 =        xder2(f,dx,x=x,y=y,z=z)
    del2 = del2 + yder2(f,dy,x=x,y=y,z=z)
    del2 = del2 + zder2(f,dz,x=x,y=y,z=z)

    if param.coord_system == 'cylindric':
        del2 += xder(f,dx,x=x,y=y,z=z)/x
    if param.coord_system == 'spherical':
        sin_y = N.sin(y)
        cos_y = N.cos(y)
        i_sin = N.where(N.abs(sin_y) < 1e-5)[0]
        if i_sin.size > 0:
            cos_y[i_sin] = 0.; sin_y[i_sin] = 1
        x_2, cotth = N.meshgrid(1./x**2, cos_y/sin_y)
        del2 += 2*xder(f,dx,x=x,y=y,z=z)/x +\
                  yder(f,dy,x=x,y=y,z=z)*x_2*cotth

    return del2
Ejemplo n.º 5
0
def del2(f, dx, dy, dz, x=[], y=[], z=[]):
    """taken from pencil code's sub.f90 
    !  calculate del6 (defined here as d^6/dx^6 + d^6/dy^6 + d^6/dz^6, rather
    !  than del2^3) of a scalar for hyperdiffusion
    Duplcation of laplacian why? Fred - added curvelinear
    """
    param = read_param(quiet=True)
    gd = read_grid(quiet=True)
    if len(x) < 1:
        x = gd.x
    if len(y) < 1:
        y = gd.y
    if len(z) < 1:
        z = gd.z

    del2 = xder2(f, dx, x=x, y=y, z=z)
    del2 = del2 + yder2(f, dy, x=x, y=y, z=z)
    del2 = del2 + zder2(f, dz, x=x, y=y, z=z)

    if param.coord_system == 'cylindric':
        del2 += xder(f, dx, x=x, y=y, z=z) / x
    if param.coord_system == 'spherical':
        sin_y = N.sin(y)
        cos_y = N.cos(y)
        i_sin = N.where(N.abs(sin_y) < 1e-5)[0]
        if i_sin.size > 0:
            cos_y[i_sin] = 0.
            sin_y[i_sin] = 1
        x_2, cotth = N.meshgrid(1. / x**2, cos_y / sin_y)
        del2 += 2*xder(f,dx,x=x,y=y,z=z)/x +\
                  yder(f,dy,x=x,y=y,z=z)*x_2*cotth

    return del2
Ejemplo n.º 6
0
def div(f, dx, dy, dz, x=[], y=[], z=[]):
    """
    take divergence of pencil code vector array
    """
    if (f.ndim != 4):
        print(
            "div: must have vector 4-D array f[mvar,mz,my,mx] for divergence")
        raise ValueError
    param = read_param(quiet=True)
    gd = read_grid(quiet=True)
    if len(x) < 1:
        x = gd.x
    if len(y) < 1:
        y = gd.y
    if len(z) < 1:
        z = gd.z

    div = xder(f[0,...],dx,x=x,y=y,z=z) +\
          yder(f[1,...],dy,x=x,y=y,z=z) +\
          zder(f[2,...],dz,x=x,y=y,z=z)

    if param.coord_system == 'cylindric':
        div += f[0, ...] / x
    if param.coord_system == 'spherical':
        sin_y = N.sin(y)
        cos_y = N.cos(y)
        i_sin = N.where(N.abs(sin_y) < 1e-5)[0]
        if i_sin.size > 0:
            cos_y[i_sin] = 0.
            sin_y[i_sin] = 1
        x_1, cotth = N.meshgrid(1. / gd.x, cos_y / sin_y)
        div += 2 * f[0, ...] * x_1 + f[1, ...] * x_1 * cotth

    return div
def xder_6th(f,dx,x=[],y=[],z=[],param=[],dim=[]):

    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    if not param:
        param=read_param(quiet=True)
    if not dim:
        dim=read_dim()
    if len(x) < 1:
        gd  = read_grid(quiet=True)
        x = gd.x
    dx=N.gradient(x)
    if (dim.nx!=1):
        dx2 = 1./(60.*dx)
    dfdx = N.zeros_like(f)
    l1 = 3
    l2 = f.shape[-1]-3
    if (l2 > l1 and dim.nx!=1):
        for l in range(l1,l2):
            dfdx[...,l] = dx2[l]*( +45.*(f[...,l+1]-f[...,l-1])
                                    -9.*(f[...,l+2]-f[...,l-2])
                                    +   (f[...,l+3]-f[...,l-3]) )
    else:
        dfdx = 0.
    return dfdx
Ejemplo n.º 8
0
def laplacian(f,dx,dy,dz,x=[],y=[],z=[],param=[],dim=[]):
    """
    take the laplacian of a pencil code scalar array
    """
    if not param:
        param = read_param(quiet=True)
    if not dim:
        dim = read_dim()
    if len(x) < 1:
        gd  = read_grid(quiet=True)
        x = gd.x
        y = gd.y
        z = gd.z

    laplacian = N.empty(f.shape)
    laplacian = xder2(f,dx,x=x,y=y,z=z,param=param,dim=dim) +\
                yder2(f,dy,x=x,y=y,z=z,param=param,dim=dim) +\
                zder2(f,dz,x=x,y=y,z=z,param=param,dim=dim)

    if param.coord_system == 'cylindric':
        laplacian += xder(f,dx,x=x,y=y,z=z,param=param,dim=dim)/x
    if param.coord_system == 'spherical':
        sin_y = N.sin(y)
        cos_y = N.cos(y)
        i_sin = N.where(N.abs(sin_y) < 1e-5)[0]
        if i_sin.size > 0:
            cos_y[i_sin] = 0.; sin_y[i_sin] = 1
        x_2, cotth = N.meshgrid(1./x**2, cos_y/sin_y)
        laplacian += 2*xder(f,dx,x=x,y=y,z=z,param=param,dim=dim)/x +\
                       yder(f,dy,x=x,y=y,z=z,param=param,dim=dim)*x_2*cotth

    return laplacian
Ejemplo n.º 9
0
def yder_6th(f, dy, x=[], y=[], z=[], param=[], dim=[]):

    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    if not param:
        param = read_param(quiet=True)
    if not dim:
        dim = read_dim()

    dy = N.gradient(y)
    if (dim.ny != 1):
        dy2 = 1. / (60. * dy)
    dfdy = N.zeros_like(f)
    m1 = 3
    m2 = f.shape[-2] - 3

    if (m2 > m1 and dim.ny != 1):
        for m in range(m1, m2):
            dfdy[...,
                 m, :] = dy2[m] * (+45. *
                                   (f[..., m + 1, :] - f[..., m - 1, :]) - 9. *
                                   (f[..., m + 2, :] - f[..., m - 2, :]) +
                                   (f[..., m + 3, :] - f[..., m - 3, :]))
    else:
        dfdy = 0.
    if param.coord_system == ('cylindric' or 'spherical'):
        if len(x) < 1:
            gd = read_grid(quiet=True)
            x = gd.x
        dfdy /= x

    return dfdy
Ejemplo n.º 10
0
def curl(f,dx,dy,dz,x=[],y=[],z=[],run2D=False,param=[],dim=[]):
    """
    take the curl of a pencil code vector array.
    23-fev-2009/dintrans+morin: introduced the run2D parameter to deal
    with pure 2-D snapshots (solved the (x,z)-plane pb)
    """
    if (f.shape[0] != 3):
        print("curl: must have vector 4-D array f[3,mz,my,mx] for curl")
        raise ValueError

    if not param:
        param = read_param(quiet=True)
    if not dim:
        dim = read_dim()
    if len(x) < 1:
        gd = read_grid(quiet=True, param=param)
        x = gd.x
        y = gd.y
        z = gd.z

    curl = N.empty_like(f)
    if (not(run2D)):
    # 3-D case
        curl[0,...] = yder(f[2,...],dy,x=x,y=y,z=z,param=param,dim=dim) -\
                      zder(f[1,...],dz,x=x,y=y,z=z,param=param,dim=dim)
        curl[1,...] = zder(f[0,...],dz,x=x,y=y,z=z,param=param,dim=dim) -\
                      xder(f[2,...],dx,x=x,y=y,z=z,param=param,dim=dim)
        curl[2,...] = xder(f[1,...],dx,x=x,y=y,z=z,param=param,dim=dim) -\
                      yder(f[0,...],dy,x=x,y=y,z=z,param=param,dim=dim)
    elif (dim.ny == 1):
    # 2-D case in the (x,z)-plane
    # f[...,nz,1,nx] if run2D=False or f[...,nz,nx] if run2D=True
        curl[0,...] = zder(f,dz,x=x,y=y,z=z,run2D=run2D,param=param, \
        dim=dim)[0,...] - xder(f,dx,x=x,y=y,z=z,param=param,dim=dim)[2,...]
    elif (dim.nz ==1):
    # 2-D case in the (x,y)-plane
    # f[...,1,ny,nx] if run2D=False or f[...,ny,nx] if run2D=True
        curl[0,...] = xder(f,dx,x=x,y=y,z=z,param=param,dim=dim)[1,...] -\
                      yder(f,dy,x=x,y=y,z=z,param=param,dim=dim)[0,...]

    if param.coord_system == 'cylindric':
    # 2-D case in the (r,theta)-plane
        if run2D:
            curl[0,...] += f[1,...]/x
        else:
    # 3-D case
            curl[2,...] += f[1,...]/x
    if param.coord_system == 'spherical':
        sin_y = N.sin(y)
        cos_y = N.cos(y)
        i_sin = N.where(N.abs(sin_y) < 1e-5)[0]
        if i_sin.size > 0:
            cos_y[i_sin] = 0.; sin_y[i_sin] = 1
        x_1, cotth = N.meshgrid(1./x, cos_y/sin_y)
        curl[0,...] += f[2,...]*x_1*cotth
        curl[1,...] -= f[2,...]/x
        curl[2,...] += f[1,...]/x

    return curl
Ejemplo n.º 11
0
def curl2(f, dx, dy, dz, x=[], y=[], z=[]):
    """
    take the double curl of a pencil code vector array.
    """
    if (f.ndim != 4 or f.shape[0] != 3):
        print("curl2: must have vector 4-D array f[3,mz,my,mx] for curl2")
        raise ValueError
    param = read_param(quiet=True)
    gd = read_grid(quiet=True)
    if len(x) < 1:
        x = gd.x
    if len(y) < 1:
        y = gd.y
    if len(z) < 1:
        z = gd.z

    curl2 = N.empty(f.shape)
    curl2[0,...] = xder(yder(f[1,...],dy,x=x,y=y,z=z) +
                        zder(f[2,...],dz,x=x,y=y,z=z),dx,x=x,y=y,z=z) -\
                   yder2(f[0,...],dy,x=x,y=y,z=z) -\
                   zder2(f[0,...],dz,x=x,y=y,z=z)
    curl2[1,...] = yder(xder(f[0,...],dx,x=x,y=y,z=z) +
                        zder(f[2,...],dz,x=x,y=y,z=z),dy,x=x,y=y,z=z) -\
                   xder2(f[1,...],dx,x=x,y=y,z=z) -\
                   zder2(f[1,...],dz,x=x,y=y,z=z)
    curl2[2,...] = zder(xder(f[0,...],dx,x=x,y=y,z=z) +
                        yder(f[1,...],dy,x=x,y=y,z=z),dz,x=x,y=y,z=z) -\
                   xder2(f[2,...],dx,x=x,y=y,z=z) -\
                   yder2(f[2,...],dy,x=x,y=y,z=z)

    if param.coord_system == 'cylindric':
        curl2[0, ...] += yder(f[1, ...], dy, x=x, y=y, z=z) / x**2
        curl2[1, ...] += f[1, ...] / gd.x**2 - xder(
            f[1, ...], dx, x=x, y=y, z=z) / x
        curl2[2, ...] += (zder(f[0, ...], dz, x=x, y=y, z=z) -
                          xder(f[2, ...], dx, x=x, y=y, z=z)) / x
    if param.coord_system == 'spherical':
        sin_y = N.sin(y)
        cos_y = N.cos(y)
        i_sin = N.where(N.abs(sin_y) < 1e-5)[0]
        if i_sin.size > 0:
            cos_y[i_sin] = 0.
            sin_y[i_sin] = 1
        x_1, cotth = N.meshgrid(1. / x, cos_y / sin_y)
        sin2th, x_2 = N.meshgrid(1. / x**2, 1 / sin_y**2)
        curl2[0,...] += (yder(f[1,...],dy,x=x,y=y,z=z) +
                         zder(f[2,...],dz,x=x,y=y,z=z))/x +\
              x_1*cotth*(xder(f[1,...],dx,x=x,y=y,z=z) -
                         yder(f[0,...],dy,x=x,y=y,z=z) + f[1,...]/x )
        curl2[1,...] +=  zder(f[2,...],dz,x=x,y=y,z=z)*x_1*cotth -\
                       2*xder(f[1,...],dx,x=x,y=y,z=z)/x
        curl2[2,...] += x_2*sin2th*f[2,...] - \
                       2*xder(f[2,...],dx,x=x,y=y,z=z)/x - (
                         yder(f[2,...],dy,x=x,y=y,z=z) +
                         zder(f[1,...],dz,x=x,y=y,z=z))*x_1*cotth

    return curl2
Ejemplo n.º 12
0
def curl(f,dx,dy,dz,x=[],y=[],z=[],run2D=False,param=[]):
    """
    take the curl of a pencil code vector array.
    23-fev-2009/dintrans+morin: introduced the run2D parameter to deal
    with pure 2-D snapshots (solved the (x,z)-plane pb)
    """
    if (f.shape[0] != 3):
        print("curl: must have vector 4-D array f[3,mz,my,mx] for curl")
        raise ValueError

    if not param:
        param = read_param(quiet=True)
    if len(x) < 1:
        gd = read_grid(quiet=True)
        x = gd.x
        y = gd.y
        z = gd.z

    curl = N.empty_like(f)
    if (dy != 0. and dz != 0.):
    # 3-D case
        curl[0,...] = yder(f[2,...],dy,x=x,y=y,z=z) -\
                      zder(f[1,...],dz,x=x,y=y,z=z)
        curl[1,...] = zder(f[0,...],dz,x=x,y=y,z=z) -\
                      xder(f[2,...],dx,x=x,y=y,z=z)
        curl[2,...] = xder(f[1,...],dx,x=x,y=y,z=z) -\
                      yder(f[0,...],dy,x=x,y=y,z=z)
    elif (dy == 0.):
    # 2-D case in the (x,z)-plane
    # f[...,nz,1,nx] if run2D=False or f[...,nz,nx] if run2D=True
        curl[0,...] = zder(f,dz,x=x,y=y,z=z,run2D=run2D)[0,...] -\
                      xder(f,dx,x=x,y=y,z=z)[2,...]
    else:
    # 2-D case in the (x,y)-plane
    # f[...,1,ny,nx] if run2D=False or f[...,ny,nx] if run2D=True
        curl[0,...] = xder(f,dx,x=x,y=y,z=z)[1,...] -\
                      yder(f,dy,x=x,y=y,z=z)[0,...]

    if param.coord_system == 'cylindric':
    # 2-D case in the (r,theta)-plane
        if run2D:
            curl[0,...] += f[1,...]/x
        else:
    # 3-D case
            curl[2,...] += f[1,...]/x
    if param.coord_system == 'spherical':
        sin_y = N.sin(y)
        cos_y = N.cos(y)
        i_sin = N.where(N.abs(sin_y) < 1e-5)[0]
        if i_sin.size > 0:
            cos_y[i_sin] = 0.; sin_y[i_sin] = 1
        x_1, cotth = N.meshgrid(1./x, cos_y/sin_y)
        curl[0,...] += f[2,...]*x_1*cotth
        curl[1,...] -= f[2,...]/x
        curl[2,...] += f[1,...]/x

    return curl
def zder2_6th(f, dz, x=[], y=[], z=[], param=[], dim=[]):

    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    if (len(z) < 1):
        gd = read_grid(quiet=True)
        z = gd.z
    if not param:
        param = read_param(quiet=True)
    if not dim:
        dim = read_dim()

    dz = N.gradient(z)
    if (dim.nz != 1):
        dz2 = 1. / (180. * dz**2.)
    dfdz = N.zeros_like(f)
    n1 = 3
    n2 = f.shape[-3] - 3

    if (n2 > n1 and dim.nz != 1):
        for n in range(n1, n2):
            dfdz[..., n, :, :] = dz2[n] * (
                -490. * f[..., n, :, :] + 270. *
                (f[..., n - 1, :, :] + f[..., n + 1, :, :]) - 27. *
                (f[..., n - 2, :, :] + f[..., n + 2, :, :]) + 2. *
                (f[..., n - 3, :, :] + f[..., n + 3, :, :]))
    else:
        dfdz = 0.
    if param.coord_system == 'spherical':
        if (len(x) or len(y)) < 1:
            gd = read_grid(quiet=True)
            x = gd.x
            y = gd.y
        sin_y = N.sin(y)
        siny1 = 1. / sin_y
        i_sin = N.where(N.abs(sin_y) < 1e-5)[0]
        if i_sin.size > 0:
            siny1[i_sin] = 0.
        x_2, sin2th = N.meshgrid(1. / x**2, siny1**2)
        dfdz *= x_2 * sin2th

    return dfdz
Ejemplo n.º 14
0
def zder_6th(f, dz, x=[], y=[], z=[], run2D=False, param=[], dim=[]):

    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    if not param:
        param = read_param(quiet=True)
    if not dim:
        dim = read_dim()

    dz = N.gradient(z)
    if (dim.nz != 1):
        dz2 = 1. / (60. * dz)
    dfdz = N.zeros_like(f)

    n1 = 3
    if run2D:
        n2 = f.shape[1] - 3
    else:
        n2 = f.shape[-3] - 3

    if (n2 > n1 and dim.nz != 1):
        if (run2D):
            # f[...,z,x] or f[...,z,y]
            for n in range(n1, n2):
                dfdz[...,
                     n, :] = dz2[n] * (+45. *
                                       (f[..., n + 1, :] - f[..., n - 1, :]) -
                                       9. *
                                       (f[..., n + 2, :] - f[..., n - 2, :]) +
                                       (f[..., n + 3, :] - f[..., n - 3, :]))

        else:
            # f[...,z,y,x]
            for n in range(n1, n2):
                dfdz[..., n, :, :] = dz2[n] * (
                    +45. * (f[..., n + 1, :, :] - f[..., n - 1, :, :]) - 9. *
                    (f[..., n + 2, :, :] - f[..., n - 2, :, :]) +
                    (f[..., n + 3, :, :] - f[..., n - 3, :, :]))
    else:
        dfdz = 0
    if param.coord_system == 'spherical':
        if (len(x) or len(y)) < 1:
            gd = read_grid(quiet=True)
            x = gd.x
            y = gd.y
        sin_y = N.sin(y)
        siny1 = 1. / sin_y
        i_sin = N.where(N.abs(sin_y) < 1e-5)[0]
        if i_sin.size > 0:
            siny1[i_sin] = 0.
        x_1, sin1th = N.meshgrid(1. / x, siny1)
        dfdz *= x_1 * sin1th

    return dfdz
Ejemplo n.º 15
0
def curl2(f,dx,dy,dz,x=[],y=[],z=[]):
    """
    take the double curl of a pencil code vector array.
    """
    if (f.ndim != 4 or f.shape[0] != 3):
        print("curl2: must have vector 4-D array f[3,mz,my,mx] for curl2")
        raise ValueError
    param = read_param(quiet=True)
    gd  = read_grid(quiet=True)
    if len(x) < 1:
        x = gd.x
    if len(y) < 1:
        y = gd.y
    if len(z) < 1:
        z = gd.z

    curl2 = N.empty(f.shape)
    curl2[0,...] = xder(yder(f[1,...],dy,x=x,y=y,z=z) +
                        zder(f[2,...],dz,x=x,y=y,z=z),dx,x=x,y=y,z=z) -\
                   yder2(f[0,...],dy,x=x,y=y,z=z) -\
                   zder2(f[0,...],dz,x=x,y=y,z=z)
    curl2[1,...] = yder(xder(f[0,...],dx,x=x,y=y,z=z) +
                        zder(f[2,...],dz,x=x,y=y,z=z),dy,x=x,y=y,z=z) -\
                   xder2(f[1,...],dx,x=x,y=y,z=z) -\
                   zder2(f[1,...],dz,x=x,y=y,z=z)
    curl2[2,...] = zder(xder(f[0,...],dx,x=x,y=y,z=z) +
                        yder(f[1,...],dy,x=x,y=y,z=z),dz,x=x,y=y,z=z) -\
                   xder2(f[2,...],dx,x=x,y=y,z=z) -\
                   yder2(f[2,...],dy,x=x,y=y,z=z)

    if param.coord_system == 'cylindric':
        curl2[0,...] +=                    yder(f[1,...],dy,x=x,y=y,z=z)/x**2
        curl2[1,...] += f[1,...]/gd.x**2 - xder(f[1,...],dx,x=x,y=y,z=z)/x
        curl2[2,...] +=                   (zder(f[0,...],dz,x=x,y=y,z=z) -
                                           xder(f[2,...],dx,x=x,y=y,z=z))/x
    if param.coord_system == 'spherical':
        sin_y = N.sin(y)
        cos_y = N.cos(y)
        i_sin = N.where(N.abs(sin_y) < 1e-5)[0]
        if i_sin.size > 0:
            cos_y[i_sin] = 0.; sin_y[i_sin] = 1
        x_1 ,cotth  = N.meshgrid(   1./x, cos_y/sin_y)
        sin2th, x_2 = N.meshgrid(1./x**2, 1/sin_y**2 )
        curl2[0,...] += (yder(f[1,...],dy,x=x,y=y,z=z) +
                         zder(f[2,...],dz,x=x,y=y,z=z))/x +\
              x_1*cotth*(xder(f[1,...],dx,x=x,y=y,z=z) -
                         yder(f[0,...],dy,x=x,y=y,z=z) + f[1,...]/x )
        curl2[1,...] +=  zder(f[2,...],dz,x=x,y=y,z=z)*x_1*cotth -\
                       2*xder(f[1,...],dx,x=x,y=y,z=z)/x
        curl2[2,...] += x_2*sin2th*f[2,...] - \
                       2*xder(f[2,...],dx,x=x,y=y,z=z)/x - (
                         yder(f[2,...],dy,x=x,y=y,z=z) +
                         zder(f[1,...],dz,x=x,y=y,z=z))*x_1*cotth

    return curl2
def zder2_6th(f,dz,x=[],y=[],z=[],param=[],dim=[]):

    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    if (len(z) < 1):
        gd=read_grid(quiet=True)
        z=gd.z
    if not param:
        param=read_param(quiet=True)
    if not dim:
        dim=read_dim()

    dz = N.gradient(z)
    if (dim.nz!=1):
        dz2 = 1./(180.*dz**2.)
    dfdz = N.zeros_like(f)
    n1 = 3
    n2 = f.shape[-3]-3
    
    if (n2 > n1 and dim.nz!=1):
        for n in range(n1,n2): 
            dfdz[...,n,:,:] = dz2[n]*(-490.* f[...,n,:,:]
                                      +270.*(f[...,n-1,:,:]+f[...,n+1,:,:])
                                      - 27.*(f[...,n-2,:,:]+f[...,n+2,:,:])
                                      +  2.*(f[...,n-3,:,:]+f[...,n+3,:,:]) )
    else:
        dfdz = 0.
    if param.coord_system == 'spherical':
        if (len(x) or len(y)) < 1:
            gd=read_grid(quiet=True)
            x=gd.x; y=gd.y
        sin_y = N.sin(y)
        siny1 = 1./sin_y
        i_sin = N.where(N.abs(sin_y) < 1e-5)[0]
        if i_sin.size > 0:
            siny1[i_sin] = 0.
        x_2, sin2th = N.meshgrid(1./x**2, siny1**2)
        dfdz *= x_2*sin2th

    return dfdz
Ejemplo n.º 17
0
def zder_6th(f,dz,x=[],y=[],z=[],run2D=False):
    
    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    param=read_param(quiet=True)

    dz2 = 1./(60.*dz)
    dfdz = N.zeros_like(f)
    n1 = 3
    if run2D:
        n2 = f.shape[1]-3
    else:
        n2 = f.shape[-3]-3

    if (n2 > n1):
       if (run2D):
          # f[...,z,x] or f[...,z,y]
          dfdz[...,n1:n2,:] = dz2*(+45.*(f[...,n1+1:n2+1,:]
                              -f[...,n1-1:n2-1,:])
                              -9.*(f[...,n1+2:n2+2,:]
                              -f[...,n1-2:n2-2,:]) 
                              +(f[...,n1+3:n2+3,:]-f[...,n1-3:n2-3,:]) )

       else:
          # f[...,z,y,x]
          dfdz[...,n1:n2,:,:] = dz2*(+45.*(f[...,n1+1:n2+1,:,:]
                                -f[...,n1-1:n2-1,:,:])
                                -9.*(f[...,n1+2:n2+2,:,:]
                                -f[...,n1-2:n2-2,:,:]) 
                                +(f[...,n1+3:n2+3,:,:]-f[...,n1-3:n2-3,:,:]) )
    else:
        dfdz=0
    if param.coord_system == 'spherical':
        if (len(x) or len(y)) < 1:
            gd=read_grid(quiet=True)
            x=gd.x; y=gd.y
        sin_y = N.sin(y)
        siny1 = 1./sin_y
        i_sin = N.where(N.abs(sin_y) < 1e-5)[0]
        if i_sin.size > 0:
            siny1[i_sin] = 0.
        x_1, sin1th = N.meshgrid(1./x, siny1)
        dfdz *= x_1*sin1th

    return dfdz
Ejemplo n.º 18
0
def del6(f,dx,dy,dz,x=[],y=[],z=[]):
    """taken from pencil code's sub.f90 
    !  calculate del6 (defined here as d^6/dx^6 + d^6/dy^6 + d^6/dz^6, rather
    !  than del2^3) of a scalar for hyperdiffusion
    """
    gd  = read_grid(quiet=True)
    if len(x) < 1:
        x = gd.x
    if len(y) < 1:
        y = gd.y
    if len(z) < 1:
        z = gd.z
    del6 =        xder6(f,dx,x=x,y=y,z=z)
    del6 = del6 + yder6(f,dy,x=x,y=y,z=z)
    del6 = del6 + zder6(f,dz,x=x,y=y,z=z)

    return del6
Ejemplo n.º 19
0
def del6(f,dx,dy,dz,x=[],y=[],z=[]):
    """taken from pencil code's sub.f90 
    !  calculate del6 (defined here as d^6/dx^6 + d^6/dy^6 + d^6/dz^6, rather
    !  than del2^3) of a scalar for hyperdiffusion
    """
    gd  = read_grid(quiet=True)
    if len(x) < 1:
        x = gd.x
    if len(y) < 1:
        y = gd.y
    if len(z) < 1:
        z = gd.z
    del6 =        xder6(f,dx,x=x,y=y,z=z)
    del6 = del6 + yder6(f,dy,x=x,y=y,z=z)
    del6 = del6 + zder6(f,dz,x=x,y=y,z=z)

    return del6
Ejemplo n.º 20
0
def grad(f,dx,dy,dz,x=[],y=[],z=[]):
    """
    take the gradient of a pencil code scalar array.
    """
    if (f.ndim != 3):
        print("grad: must have scalar 3-D array f[mz,my,mx] for gradient")
        raise ValueError
    gd  = read_grid(quiet=True)
    if len(x) < 1:
        x = gd.x
    if len(y) < 1:
        y = gd.y
    if len(z) < 1:
        z = gd.z

    grad = N.empty((3,)+f.shape)
    grad[0,...] = xder(f,dx,x=x,y=y,z=z)
    grad[1,...] = yder(f,dy,x=x,y=y,z=z)
    grad[2,...] = zder(f,dz,x=x,y=y,z=z)

    return grad
Ejemplo n.º 21
0
def grad(f,dx,dy,dz,x=[],y=[],z=[],param=[],dim=[]):
    """
    take the gradient of a pencil code scalar array.
    """
    if (f.ndim != 3):
        print("grad: must have scalar 3-D array f[mz,my,mx] for gradient")
        raise ValueError

    if not param:
        param=read_param(quiet=True)
    if not dim:
        dim=read_dim()
    if len(x) < 1:
        gd = read_grid(quiet=True)
        x = gd.x
        y = gd.y
        z = gd.z

    grad = N.empty((3,)+f.shape)
    grad[0,...] = xder(f,dx,x=x,y=y,z=z,param=param,dim=dim)
    grad[1,...] = yder(f,dy,x=x,y=y,z=z,param=param,dim=dim)
    grad[2,...] = zder(f,dz,x=x,y=y,z=z,param=param,dim=dim)

    return grad