Ejemplo n.º 1
0
 def subTracers(q, vv, p, tracers0, iproc, hMin = 2e-3, hMax = 2e4, lMax = 500, tol = 1e-2, 
                interpolation = 'weighted', integration = 'simple', intQ = ['']):
     
     tracers = tracers0
     mapping = np.zeros((tracers.shape[0], tracers.shape[1], 3))
     
     for ix in range(tracers.shape[0]):
         for iy in range(tracers.shape[1]):
             xx = tracers[ix, iy, 2:5].copy()
             s = pc.stream(vv, p, interpolation = interpolation, integration = integration, hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, xx = xx)
             tracers[ix, iy, 2:5] = s.tracers[s.sl-1]
             tracers[ix, iy, 5] = s.l
             if (any(intQ == 'curlyA')):
                 for l in range(s.sl-1):
                     aaInt = pc.vecInt((s.tracers[l+1] + s.tracers[l])/2, aa, p, interpolation)
                     tracers[ix, iy, 6] += np.dot(aaInt, (s.tracers[l+1] - s.tracers[l]))
             
             # create the color mapping
             if (tracers[ix, iy, 4] > grid.z[-2]):
                 if (tracers[ix, iy, 0] - tracers[ix, iy, 2]) > 0:
                     if (tracers[ix, iy, 1] - tracers[ix, iy, 3]) > 0:
                         mapping[ix, iy, :] = [0,1,0]
                     else:
                         mapping[ix, iy, :] = [1,1,0]
                 else:
                     if (tracers[ix, iy, 1] - tracers[ix, iy, 3]) > 0:
                         mapping[ix, iy, :] = [0,0,1]
                     else:
                         mapping[ix, iy, :] = [1,0,0]
             else:
                 mapping[ix, iy, :] = [1,1,1]
     
     q.put((tracers, mapping, iproc))
Ejemplo n.º 2
0
    def subTracers(q,
                   vv,
                   p,
                   tracers0,
                   iproc,
                   hMin=2e-3,
                   hMax=2e4,
                   lMax=500,
                   tol=1e-2,
                   interpolation='weighted',
                   integration='simple',
                   intQ=['']):

        tracers = tracers0
        mapping = np.zeros((tracers.shape[0], tracers.shape[1], 3))

        for ix in range(tracers.shape[0]):
            for iy in range(tracers.shape[1]):
                xx = tracers[ix, iy, 2:5].copy()
                s = pc.stream(vv,
                              p,
                              interpolation=interpolation,
                              integration=integration,
                              hMin=hMin,
                              hMax=hMax,
                              lMax=lMax,
                              tol=tol,
                              xx=xx)
                tracers[ix, iy, 2:5] = s.tracers[s.sl - 1]
                tracers[ix, iy, 5] = s.l
                if (any(intQ == 'curlyA')):
                    for l in range(s.sl - 1):
                        aaInt = pc.vecInt(
                            (s.tracers[l + 1] + s.tracers[l]) / 2, aa, p,
                            interpolation)
                        tracers[ix, iy,
                                6] += np.dot(aaInt,
                                             (s.tracers[l + 1] - s.tracers[l]))

                # create the color mapping
                if (tracers[ix, iy, 4] > grid.z[-2]):
                    if (tracers[ix, iy, 0] - tracers[ix, iy, 2]) > 0:
                        if (tracers[ix, iy, 1] - tracers[ix, iy, 3]) > 0:
                            mapping[ix, iy, :] = [0, 1, 0]
                        else:
                            mapping[ix, iy, :] = [1, 1, 0]
                    else:
                        if (tracers[ix, iy, 1] - tracers[ix, iy, 3]) > 0:
                            mapping[ix, iy, :] = [0, 0, 1]
                        else:
                            mapping[ix, iy, :] = [1, 0, 0]
                else:
                    mapping[ix, iy, :] = [1, 1, 1]

        q.put((tracers, mapping, iproc))
Ejemplo n.º 3
0
 def edge(vv,
          p,
          sx,
          sy,
          diff1,
          diff2,
          phiMin,
          rec,
          hMin=hMin,
          hMax=hMax,
          lMax=lMax,
          tol=tol,
          interpolation=interpolation,
          integration=integration):
     dtot = m.atan2(diff1[0] * diff2[1] - diff2[0] * diff1[1],
                    diff1[0] * diff2[0] + diff1[1] * diff2[1])
     if ((abs(dtot) > phiMin) and (rec < 4)):
         xm = 0.5 * (sx[0] + sx[1])
         ym = 0.5 * (sy[0] + sy[1])
         # trace intermediate field line
         s = pc.stream(vv,
                       p,
                       hMin=hMin,
                       hMax=hMax,
                       lMax=lMax,
                       tol=tol,
                       interpolation=interpolation,
                       integration=integration,
                       xx=np.array([xm, ym, p.Oz]))
         tracer = np.concatenate(
             (s.tracers[0,
                        0:2], s.tracers[s.sl - 1, :], np.reshape(s.l, (1))))
         # discard any streamline which does not converge or hits the boundary
         if ((tracer[5] >= lMax) or (tracer[4] < p.Oz + p.Lz - p.dz)):
             dtot = 0.
         else:
             diffm = np.array(
                 [tracer[2] - tracer[0], tracer[3] - tracer[1]])
             if (sum(diffm**2) != 0):
                 diffm = diffm / np.sqrt(sum(diffm**2))
             dtot = edge(vv, p, [sx[0], xm], [sy[0], ym], diff1, diffm, phiMin, rec+1,
                          hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration)+ \
                    edge(vv, p, [xm, sx[1]], [ym, sy[1]], diffm, diff2, phiMin, rec+1,
                          hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration)
     return dtot
Ejemplo n.º 4
0
 def edge(vv, p, sx, sy, diff1, diff2, phiMin, rec, hMin = hMin, hMax = hMax,
          lMax = lMax, tol = tol, interpolation = interpolation, integration = integration):
     dtot = m.atan2(diff1[0]*diff2[1] - diff2[0]*diff1[1], diff1[0]*diff2[0] + diff1[1]*diff2[1])
     if ((abs(dtot) > phiMin) and (rec < 4)):
         xm = 0.5*(sx[0]+sx[1])
         ym = 0.5*(sy[0]+sy[1])
         # trace intermediate field line
         s = pc.stream(vv, p, hMin = hMin, hMax = hMax, lMax = lMax, tol = tol,
                       interpolation = interpolation, integration = integration, xx = np.array([xm, ym, p.Oz]))
         tracer = np.concatenate((s.tracers[0,0:2], s.tracers[s.sl-1,:], np.reshape(s.l,(1))))
         # discard any streamline which does not converge or hits the boundary
         if ((tracer[5] >= lMax) or (tracer[4] < p.Oz+p.Lz-p.dz)):
             dtot = 0.
         else:
             diffm = np.array([tracer[2] - tracer[0], tracer[3] - tracer[1]])
             if (sum(diffm**2) != 0):
                 diffm = diffm / np.sqrt(sum(diffm**2))
             dtot = edge(vv, p, [sx[0], xm], [sy[0], ym], diff1, diffm, phiMin, rec+1,
                          hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration)+ \
                    edge(vv, p, [xm, sx[1]], [ym, sy[1]], diffm, diff2, phiMin, rec+1,
                          hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration)        
     return dtot
Ejemplo n.º 5
0
 def subFixed(queue, ix0, iy0, vv, p, tracers, iproc, hMin = 2e-3, hMax = 2e4, lMax = 500,
              tol = 1e-2, interpolation = 'weighted', integration = 'simple'):
     diff = np.zeros((4,2))
     phiMin = np.pi/8.
     x = []
     y = []
     q = []
     fidx = 0
 
     for ix in ix0:
         for iy in iy0:
             # compute Poincare index around this cell (!= 0 for potential fixed point)
             diff[0,:] = tracers[iy, ix, 0, 2:4] - tracers[iy, ix, 0, 0:2]
             diff[1,:] = tracers[iy, ix+1, 0, 2:4] - tracers[iy, ix+1, 0, 0:2]
             diff[2,:] = tracers[iy+1, ix+1, 0, 2:4] - tracers[iy+1, ix+1, 0, 0:2]
             diff[3,:] = tracers[iy+1, ix, 0, 2:4] - tracers[iy+1, ix, 0, 0:2]
             if (sum(np.sum(diff**2, axis = 1) != 0) == True):
                 diff = np.swapaxes(np.swapaxes(diff, 0, 1) / np.sqrt(np.sum(diff**2, axis = 1)), 0, 1)
             poincare = pIndex(vv, p, tracers[iy, ix:ix+2, 0, 0], tracers[iy:iy+2, ix, 0, 1], diff, phiMin,
                             hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration)
             
             if (abs(poincare) > 5): # use 5 instead of 2pi to account for rounding errors
                 # subsample to get starting point for iteration
                 nt = 4
                 xmin = tracers[iy, ix, 0, 0]
                 ymin = tracers[iy, ix, 0, 1]
                 xmax = tracers[iy, ix+1, 0, 0]
                 ymax = tracers[iy+1, ix, 0, 1]
                 xx = np.zeros((nt**2,3))
                 tracersSub = np.zeros((nt**2,5))
                 i1 = 0
                 for j1 in range(nt):
                     for k1 in range(nt):
                         xx[i1,0] = xmin + j1/(nt-1.)*(xmax - xmin)
                         xx[i1,1] = ymin + k1/(nt-1.)*(ymax - ymin)
                         xx[i1,2] = p.Oz
                         i1 += 1
                 for it1 in range(nt**2):
                     s = pc.stream(vv, p, hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, 
                                 interpolation = interpolation, integration = integration, xx = xx[it1,:])
                     tracersSub[it1,0:2] = xx[it1,0:2]
                     tracersSub[it1,2:] = s.tracers[s.sl-1,:]
                 min2 = 1e6
                 minx = xmin
                 miny = ymin
                 i1 = 0
                 for j1 in range(nt):
                     for k1 in range(nt):
                         diff2 = (tracersSub[i1, 2] - tracersSub[i1, 0])**2 + (tracersSub[i1, 3] - tracersSub[i1, 1])**2
                         if (diff2 < min2):
                             min2 = diff2
                             minx = xmin + j1/(nt-1.)*(xmax - xmin)
                             miny = ymin + k1/(nt-1.)*(ymax - ymin)
                         it1 += 1
                 
                 # get fixed point from this starting position using Newton's method                
                 #TODO:
                 dl = np.min(var.dx, var.dy)/100.    # step-size for calculating the Jacobian by finite differences
                 it = 0
                 # tracers used to find the fixed point
                 tracersNull = np.zeros((5,4))
                 point = np.array([minx, miny])
                 while True:
                     # trace field lines at original point and for Jacobian:
                     # (second order seems to be enough)
                     xx = np.zeros((5,3))
                     xx[0,:] = np.array([point[0], point[1], p.Oz])
                     xx[1,:] = np.array([point[0]-dl, point[1], p.Oz])
                     xx[2,:] = np.array([point[0]+dl, point[1], p.Oz])
                     xx[3,:] = np.array([point[0], point[1]-dl, p.Oz])
                     xx[4,:] = np.array([point[0], point[1]+dl, p.Oz])
                     for it1 in range(5):
                         s = pc.stream(vv, p, hMin = hMin, hMax = hMax, lMax = lMax, tol = tol,
                                     interpolation = interpolation, integration = integration, xx = xx[it1,:])
                         tracersNull[it1,:2] = xx[it1,:2]
                         tracersNull[it1,2:] = s.tracers[s.sl-1,0:2]
                     
                     # check function convergence
                     ff = np.zeros(2)
                     ff[0] = tracersNull[0,2] - tracersNull[0,0]
                     ff[1] = tracersNull[0,3] - tracersNull[0,1]
                     #TODO:
                     if (sum(abs(ff)) <= 1e-4):
                         fixedPoint = np.array([point[0], point[1]])
                         break
                     
                     # compute the Jacobian
                     fjac = np.zeros((2,2))
                     fjac[0,0] = ((tracersNull[2,2] - tracersNull[2,0]) - (tracersNull[1,2] - tracersNull[1,0]))/2./dl
                     fjac[0,1] = ((tracersNull[4,2] - tracersNull[4,0]) - (tracersNull[3,2] - tracersNull[3,0]))/2./dl
                     fjac[1,0] = ((tracersNull[2,3] - tracersNull[2,1]) - (tracersNull[1,3] - tracersNull[1,1]))/2./dl
                     fjac[1,1] = ((tracersNull[4,3] - tracersNull[4,1]) - (tracersNull[3,3] - tracersNull[3,1]))/2./dl
                     
                     # invert the Jacobian
                     fjin = np.zeros((2,2))
                     det = fjac[0,0]*fjac[1,1] - fjac[0,1]*fjac[1,0]
                     #TODO:
                     if (abs(det) < dl):
                         fixedPoint = point
                         break
                     fjin[0,0] = fjac[1,1]
                     fjin[1,1] = fjac[0,0]
                     fjin[0,1] = -fjac[0,1]
                     fjin[1,0] = -fjac[1,0]
                     fjin = fjin/det
                     dpoint = np.zeros(2)
                     dpoint[0] = -fjin[0,0]*ff[0] - fjin[0,1]*ff[1]
                     dpoint[1] = -fjin[1,0]*ff[0] - fjin[1,1]*ff[1]
                     point += dpoint
                     
                     # check root convergence
                     #TODO:
                     if (sum(abs(dpoint)) < 1e-4):
                         fixedPoint = point
                         break
                     
                     if (it > 20):
                         fixedPoint = point
                         print("warning: Newton did not converged")
                         break
                     
                     it += 1
                         
                 # check if fixed point lies inside the cell
                 if ((fixedPoint[0] < tracers[iy, ix, 0, 0]) or (fixedPoint[0] > tracers[iy, ix+1, 0, 0]) or
                     (fixedPoint[1] < tracers[iy, ix, 0, 1]) or (fixedPoint[1] > tracers[iy+1, ix, 0, 1])):
                     print("warning: fixed point lies outside the cell")
                 else:
                     x.append(fixedPoint[0])
                     y.append(fixedPoint[1])
                     #q.append()
                     fidx += 1
                     
     queue.put((x, y, q, fidx, iproc))
Ejemplo n.º 6
0
    def subFixed(queue,
                 ix0,
                 iy0,
                 vv,
                 p,
                 tracers,
                 iproc,
                 hMin=2e-3,
                 hMax=2e4,
                 lMax=500,
                 tol=1e-2,
                 interpolation='weighted',
                 integration='simple'):
        diff = np.zeros((4, 2))
        phiMin = np.pi / 8.
        x = []
        y = []
        q = []
        fidx = 0

        for ix in ix0:
            for iy in iy0:
                # compute Poincare index around this cell (!= 0 for potential fixed point)
                diff[0, :] = tracers[iy, ix, 0, 2:4] - tracers[iy, ix, 0, 0:2]
                diff[1, :] = tracers[iy, ix + 1, 0, 2:4] - tracers[iy, ix + 1,
                                                                   0, 0:2]
                diff[2, :] = tracers[iy + 1, ix + 1, 0,
                                     2:4] - tracers[iy + 1, ix + 1, 0, 0:2]
                diff[3, :] = tracers[iy + 1, ix, 0, 2:4] - tracers[iy + 1, ix,
                                                                   0, 0:2]
                if (sum(np.sum(diff**2, axis=1) != 0) == True):
                    diff = np.swapaxes(
                        np.swapaxes(diff, 0, 1) /
                        np.sqrt(np.sum(diff**2, axis=1)), 0, 1)
                poincare = pIndex(vv,
                                  p,
                                  tracers[iy, ix:ix + 2, 0, 0],
                                  tracers[iy:iy + 2, ix, 0, 1],
                                  diff,
                                  phiMin,
                                  hMin=hMin,
                                  hMax=hMax,
                                  lMax=lMax,
                                  tol=tol,
                                  interpolation=interpolation,
                                  integration=integration)

                if (abs(poincare) > 5
                    ):  # use 5 instead of 2pi to account for rounding errors
                    # subsample to get starting point for iteration
                    nt = 4
                    xmin = tracers[iy, ix, 0, 0]
                    ymin = tracers[iy, ix, 0, 1]
                    xmax = tracers[iy, ix + 1, 0, 0]
                    ymax = tracers[iy + 1, ix, 0, 1]
                    xx = np.zeros((nt**2, 3))
                    tracersSub = np.zeros((nt**2, 5))
                    i1 = 0
                    for j1 in range(nt):
                        for k1 in range(nt):
                            xx[i1, 0] = xmin + j1 / (nt - 1.) * (xmax - xmin)
                            xx[i1, 1] = ymin + k1 / (nt - 1.) * (ymax - ymin)
                            xx[i1, 2] = p.Oz
                            i1 += 1
                    for it1 in range(nt**2):
                        s = pc.stream(vv,
                                      p,
                                      hMin=hMin,
                                      hMax=hMax,
                                      lMax=lMax,
                                      tol=tol,
                                      interpolation=interpolation,
                                      integration=integration,
                                      xx=xx[it1, :])
                        tracersSub[it1, 0:2] = xx[it1, 0:2]
                        tracersSub[it1, 2:] = s.tracers[s.sl - 1, :]
                    min2 = 1e6
                    minx = xmin
                    miny = ymin
                    i1 = 0
                    for j1 in range(nt):
                        for k1 in range(nt):
                            diff2 = (tracersSub[i1, 2] - tracersSub[i1, 0]
                                     )**2 + (tracersSub[i1, 3] -
                                             tracersSub[i1, 1])**2
                            if (diff2 < min2):
                                min2 = diff2
                                minx = xmin + j1 / (nt - 1.) * (xmax - xmin)
                                miny = ymin + k1 / (nt - 1.) * (ymax - ymin)
                            it1 += 1

                    # get fixed point from this starting position using Newton's method
                    #TODO:
                    dl = np.min(
                        var.dx, var.dy
                    ) / 100.  # step-size for calculating the Jacobian by finite differences
                    it = 0
                    # tracers used to find the fixed point
                    tracersNull = np.zeros((5, 4))
                    point = np.array([minx, miny])
                    while True:
                        # trace field lines at original point and for Jacobian:
                        # (second order seems to be enough)
                        xx = np.zeros((5, 3))
                        xx[0, :] = np.array([point[0], point[1], p.Oz])
                        xx[1, :] = np.array([point[0] - dl, point[1], p.Oz])
                        xx[2, :] = np.array([point[0] + dl, point[1], p.Oz])
                        xx[3, :] = np.array([point[0], point[1] - dl, p.Oz])
                        xx[4, :] = np.array([point[0], point[1] + dl, p.Oz])
                        for it1 in range(5):
                            s = pc.stream(vv,
                                          p,
                                          hMin=hMin,
                                          hMax=hMax,
                                          lMax=lMax,
                                          tol=tol,
                                          interpolation=interpolation,
                                          integration=integration,
                                          xx=xx[it1, :])
                            tracersNull[it1, :2] = xx[it1, :2]
                            tracersNull[it1, 2:] = s.tracers[s.sl - 1, 0:2]

                        # check function convergence
                        ff = np.zeros(2)
                        ff[0] = tracersNull[0, 2] - tracersNull[0, 0]
                        ff[1] = tracersNull[0, 3] - tracersNull[0, 1]
                        #TODO:
                        if (sum(abs(ff)) <= 1e-4):
                            fixedPoint = np.array([point[0], point[1]])
                            break

                        # compute the Jacobian
                        fjac = np.zeros((2, 2))
                        fjac[0, 0] = (
                            (tracersNull[2, 2] - tracersNull[2, 0]) -
                            (tracersNull[1, 2] - tracersNull[1, 0])) / 2. / dl
                        fjac[0, 1] = (
                            (tracersNull[4, 2] - tracersNull[4, 0]) -
                            (tracersNull[3, 2] - tracersNull[3, 0])) / 2. / dl
                        fjac[1, 0] = (
                            (tracersNull[2, 3] - tracersNull[2, 1]) -
                            (tracersNull[1, 3] - tracersNull[1, 1])) / 2. / dl
                        fjac[1, 1] = (
                            (tracersNull[4, 3] - tracersNull[4, 1]) -
                            (tracersNull[3, 3] - tracersNull[3, 1])) / 2. / dl

                        # invert the Jacobian
                        fjin = np.zeros((2, 2))
                        det = fjac[0, 0] * fjac[1, 1] - fjac[0, 1] * fjac[1, 0]
                        #TODO:
                        if (abs(det) < dl):
                            fixedPoint = point
                            break
                        fjin[0, 0] = fjac[1, 1]
                        fjin[1, 1] = fjac[0, 0]
                        fjin[0, 1] = -fjac[0, 1]
                        fjin[1, 0] = -fjac[1, 0]
                        fjin = fjin / det
                        dpoint = np.zeros(2)
                        dpoint[0] = -fjin[0, 0] * ff[0] - fjin[0, 1] * ff[1]
                        dpoint[1] = -fjin[1, 0] * ff[0] - fjin[1, 1] * ff[1]
                        point += dpoint

                        # check root convergence
                        #TODO:
                        if (sum(abs(dpoint)) < 1e-4):
                            fixedPoint = point
                            break

                        if (it > 20):
                            fixedPoint = point
                            print "warning: Newton did not converged"
                            break

                        it += 1

                    # check if fixed point lies inside the cell
                    if ((fixedPoint[0] < tracers[iy, ix, 0, 0])
                            or (fixedPoint[0] > tracers[iy, ix + 1, 0, 0])
                            or (fixedPoint[1] < tracers[iy, ix, 0, 1])
                            or (fixedPoint[1] > tracers[iy + 1, ix, 0, 1])):
                        print "warning: fixed point lies outside the cell"
                    else:
                        x.append(fixedPoint[0])
                        y.append(fixedPoint[1])
                        #q.append()
                        fidx += 1

        queue.put((x, y, q, fidx, iproc))