def subTracers(q, vv, p, tracers0, iproc, hMin = 2e-3, hMax = 2e4, lMax = 500, tol = 1e-2, interpolation = 'weighted', integration = 'simple', intQ = ['']): tracers = tracers0 mapping = np.zeros((tracers.shape[0], tracers.shape[1], 3)) for ix in range(tracers.shape[0]): for iy in range(tracers.shape[1]): xx = tracers[ix, iy, 2:5].copy() s = pc.stream(vv, p, interpolation = interpolation, integration = integration, hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, xx = xx) tracers[ix, iy, 2:5] = s.tracers[s.sl-1] tracers[ix, iy, 5] = s.l if (any(intQ == 'curlyA')): for l in range(s.sl-1): aaInt = pc.vecInt((s.tracers[l+1] + s.tracers[l])/2, aa, p, interpolation) tracers[ix, iy, 6] += np.dot(aaInt, (s.tracers[l+1] - s.tracers[l])) # create the color mapping if (tracers[ix, iy, 4] > grid.z[-2]): if (tracers[ix, iy, 0] - tracers[ix, iy, 2]) > 0: if (tracers[ix, iy, 1] - tracers[ix, iy, 3]) > 0: mapping[ix, iy, :] = [0,1,0] else: mapping[ix, iy, :] = [1,1,0] else: if (tracers[ix, iy, 1] - tracers[ix, iy, 3]) > 0: mapping[ix, iy, :] = [0,0,1] else: mapping[ix, iy, :] = [1,0,0] else: mapping[ix, iy, :] = [1,1,1] q.put((tracers, mapping, iproc))
def subTracers(q, vv, p, tracers0, iproc, hMin=2e-3, hMax=2e4, lMax=500, tol=1e-2, interpolation='weighted', integration='simple', intQ=['']): tracers = tracers0 mapping = np.zeros((tracers.shape[0], tracers.shape[1], 3)) for ix in range(tracers.shape[0]): for iy in range(tracers.shape[1]): xx = tracers[ix, iy, 2:5].copy() s = pc.stream(vv, p, interpolation=interpolation, integration=integration, hMin=hMin, hMax=hMax, lMax=lMax, tol=tol, xx=xx) tracers[ix, iy, 2:5] = s.tracers[s.sl - 1] tracers[ix, iy, 5] = s.l if (any(intQ == 'curlyA')): for l in range(s.sl - 1): aaInt = pc.vecInt( (s.tracers[l + 1] + s.tracers[l]) / 2, aa, p, interpolation) tracers[ix, iy, 6] += np.dot(aaInt, (s.tracers[l + 1] - s.tracers[l])) # create the color mapping if (tracers[ix, iy, 4] > grid.z[-2]): if (tracers[ix, iy, 0] - tracers[ix, iy, 2]) > 0: if (tracers[ix, iy, 1] - tracers[ix, iy, 3]) > 0: mapping[ix, iy, :] = [0, 1, 0] else: mapping[ix, iy, :] = [1, 1, 0] else: if (tracers[ix, iy, 1] - tracers[ix, iy, 3]) > 0: mapping[ix, iy, :] = [0, 0, 1] else: mapping[ix, iy, :] = [1, 0, 0] else: mapping[ix, iy, :] = [1, 1, 1] q.put((tracers, mapping, iproc))
def edge(vv, p, sx, sy, diff1, diff2, phiMin, rec, hMin=hMin, hMax=hMax, lMax=lMax, tol=tol, interpolation=interpolation, integration=integration): dtot = m.atan2(diff1[0] * diff2[1] - diff2[0] * diff1[1], diff1[0] * diff2[0] + diff1[1] * diff2[1]) if ((abs(dtot) > phiMin) and (rec < 4)): xm = 0.5 * (sx[0] + sx[1]) ym = 0.5 * (sy[0] + sy[1]) # trace intermediate field line s = pc.stream(vv, p, hMin=hMin, hMax=hMax, lMax=lMax, tol=tol, interpolation=interpolation, integration=integration, xx=np.array([xm, ym, p.Oz])) tracer = np.concatenate( (s.tracers[0, 0:2], s.tracers[s.sl - 1, :], np.reshape(s.l, (1)))) # discard any streamline which does not converge or hits the boundary if ((tracer[5] >= lMax) or (tracer[4] < p.Oz + p.Lz - p.dz)): dtot = 0. else: diffm = np.array( [tracer[2] - tracer[0], tracer[3] - tracer[1]]) if (sum(diffm**2) != 0): diffm = diffm / np.sqrt(sum(diffm**2)) dtot = edge(vv, p, [sx[0], xm], [sy[0], ym], diff1, diffm, phiMin, rec+1, hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration)+ \ edge(vv, p, [xm, sx[1]], [ym, sy[1]], diffm, diff2, phiMin, rec+1, hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration) return dtot
def edge(vv, p, sx, sy, diff1, diff2, phiMin, rec, hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration): dtot = m.atan2(diff1[0]*diff2[1] - diff2[0]*diff1[1], diff1[0]*diff2[0] + diff1[1]*diff2[1]) if ((abs(dtot) > phiMin) and (rec < 4)): xm = 0.5*(sx[0]+sx[1]) ym = 0.5*(sy[0]+sy[1]) # trace intermediate field line s = pc.stream(vv, p, hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration, xx = np.array([xm, ym, p.Oz])) tracer = np.concatenate((s.tracers[0,0:2], s.tracers[s.sl-1,:], np.reshape(s.l,(1)))) # discard any streamline which does not converge or hits the boundary if ((tracer[5] >= lMax) or (tracer[4] < p.Oz+p.Lz-p.dz)): dtot = 0. else: diffm = np.array([tracer[2] - tracer[0], tracer[3] - tracer[1]]) if (sum(diffm**2) != 0): diffm = diffm / np.sqrt(sum(diffm**2)) dtot = edge(vv, p, [sx[0], xm], [sy[0], ym], diff1, diffm, phiMin, rec+1, hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration)+ \ edge(vv, p, [xm, sx[1]], [ym, sy[1]], diffm, diff2, phiMin, rec+1, hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration) return dtot
def subFixed(queue, ix0, iy0, vv, p, tracers, iproc, hMin = 2e-3, hMax = 2e4, lMax = 500, tol = 1e-2, interpolation = 'weighted', integration = 'simple'): diff = np.zeros((4,2)) phiMin = np.pi/8. x = [] y = [] q = [] fidx = 0 for ix in ix0: for iy in iy0: # compute Poincare index around this cell (!= 0 for potential fixed point) diff[0,:] = tracers[iy, ix, 0, 2:4] - tracers[iy, ix, 0, 0:2] diff[1,:] = tracers[iy, ix+1, 0, 2:4] - tracers[iy, ix+1, 0, 0:2] diff[2,:] = tracers[iy+1, ix+1, 0, 2:4] - tracers[iy+1, ix+1, 0, 0:2] diff[3,:] = tracers[iy+1, ix, 0, 2:4] - tracers[iy+1, ix, 0, 0:2] if (sum(np.sum(diff**2, axis = 1) != 0) == True): diff = np.swapaxes(np.swapaxes(diff, 0, 1) / np.sqrt(np.sum(diff**2, axis = 1)), 0, 1) poincare = pIndex(vv, p, tracers[iy, ix:ix+2, 0, 0], tracers[iy:iy+2, ix, 0, 1], diff, phiMin, hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration) if (abs(poincare) > 5): # use 5 instead of 2pi to account for rounding errors # subsample to get starting point for iteration nt = 4 xmin = tracers[iy, ix, 0, 0] ymin = tracers[iy, ix, 0, 1] xmax = tracers[iy, ix+1, 0, 0] ymax = tracers[iy+1, ix, 0, 1] xx = np.zeros((nt**2,3)) tracersSub = np.zeros((nt**2,5)) i1 = 0 for j1 in range(nt): for k1 in range(nt): xx[i1,0] = xmin + j1/(nt-1.)*(xmax - xmin) xx[i1,1] = ymin + k1/(nt-1.)*(ymax - ymin) xx[i1,2] = p.Oz i1 += 1 for it1 in range(nt**2): s = pc.stream(vv, p, hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration, xx = xx[it1,:]) tracersSub[it1,0:2] = xx[it1,0:2] tracersSub[it1,2:] = s.tracers[s.sl-1,:] min2 = 1e6 minx = xmin miny = ymin i1 = 0 for j1 in range(nt): for k1 in range(nt): diff2 = (tracersSub[i1, 2] - tracersSub[i1, 0])**2 + (tracersSub[i1, 3] - tracersSub[i1, 1])**2 if (diff2 < min2): min2 = diff2 minx = xmin + j1/(nt-1.)*(xmax - xmin) miny = ymin + k1/(nt-1.)*(ymax - ymin) it1 += 1 # get fixed point from this starting position using Newton's method #TODO: dl = np.min(var.dx, var.dy)/100. # step-size for calculating the Jacobian by finite differences it = 0 # tracers used to find the fixed point tracersNull = np.zeros((5,4)) point = np.array([minx, miny]) while True: # trace field lines at original point and for Jacobian: # (second order seems to be enough) xx = np.zeros((5,3)) xx[0,:] = np.array([point[0], point[1], p.Oz]) xx[1,:] = np.array([point[0]-dl, point[1], p.Oz]) xx[2,:] = np.array([point[0]+dl, point[1], p.Oz]) xx[3,:] = np.array([point[0], point[1]-dl, p.Oz]) xx[4,:] = np.array([point[0], point[1]+dl, p.Oz]) for it1 in range(5): s = pc.stream(vv, p, hMin = hMin, hMax = hMax, lMax = lMax, tol = tol, interpolation = interpolation, integration = integration, xx = xx[it1,:]) tracersNull[it1,:2] = xx[it1,:2] tracersNull[it1,2:] = s.tracers[s.sl-1,0:2] # check function convergence ff = np.zeros(2) ff[0] = tracersNull[0,2] - tracersNull[0,0] ff[1] = tracersNull[0,3] - tracersNull[0,1] #TODO: if (sum(abs(ff)) <= 1e-4): fixedPoint = np.array([point[0], point[1]]) break # compute the Jacobian fjac = np.zeros((2,2)) fjac[0,0] = ((tracersNull[2,2] - tracersNull[2,0]) - (tracersNull[1,2] - tracersNull[1,0]))/2./dl fjac[0,1] = ((tracersNull[4,2] - tracersNull[4,0]) - (tracersNull[3,2] - tracersNull[3,0]))/2./dl fjac[1,0] = ((tracersNull[2,3] - tracersNull[2,1]) - (tracersNull[1,3] - tracersNull[1,1]))/2./dl fjac[1,1] = ((tracersNull[4,3] - tracersNull[4,1]) - (tracersNull[3,3] - tracersNull[3,1]))/2./dl # invert the Jacobian fjin = np.zeros((2,2)) det = fjac[0,0]*fjac[1,1] - fjac[0,1]*fjac[1,0] #TODO: if (abs(det) < dl): fixedPoint = point break fjin[0,0] = fjac[1,1] fjin[1,1] = fjac[0,0] fjin[0,1] = -fjac[0,1] fjin[1,0] = -fjac[1,0] fjin = fjin/det dpoint = np.zeros(2) dpoint[0] = -fjin[0,0]*ff[0] - fjin[0,1]*ff[1] dpoint[1] = -fjin[1,0]*ff[0] - fjin[1,1]*ff[1] point += dpoint # check root convergence #TODO: if (sum(abs(dpoint)) < 1e-4): fixedPoint = point break if (it > 20): fixedPoint = point print("warning: Newton did not converged") break it += 1 # check if fixed point lies inside the cell if ((fixedPoint[0] < tracers[iy, ix, 0, 0]) or (fixedPoint[0] > tracers[iy, ix+1, 0, 0]) or (fixedPoint[1] < tracers[iy, ix, 0, 1]) or (fixedPoint[1] > tracers[iy+1, ix, 0, 1])): print("warning: fixed point lies outside the cell") else: x.append(fixedPoint[0]) y.append(fixedPoint[1]) #q.append() fidx += 1 queue.put((x, y, q, fidx, iproc))
def subFixed(queue, ix0, iy0, vv, p, tracers, iproc, hMin=2e-3, hMax=2e4, lMax=500, tol=1e-2, interpolation='weighted', integration='simple'): diff = np.zeros((4, 2)) phiMin = np.pi / 8. x = [] y = [] q = [] fidx = 0 for ix in ix0: for iy in iy0: # compute Poincare index around this cell (!= 0 for potential fixed point) diff[0, :] = tracers[iy, ix, 0, 2:4] - tracers[iy, ix, 0, 0:2] diff[1, :] = tracers[iy, ix + 1, 0, 2:4] - tracers[iy, ix + 1, 0, 0:2] diff[2, :] = tracers[iy + 1, ix + 1, 0, 2:4] - tracers[iy + 1, ix + 1, 0, 0:2] diff[3, :] = tracers[iy + 1, ix, 0, 2:4] - tracers[iy + 1, ix, 0, 0:2] if (sum(np.sum(diff**2, axis=1) != 0) == True): diff = np.swapaxes( np.swapaxes(diff, 0, 1) / np.sqrt(np.sum(diff**2, axis=1)), 0, 1) poincare = pIndex(vv, p, tracers[iy, ix:ix + 2, 0, 0], tracers[iy:iy + 2, ix, 0, 1], diff, phiMin, hMin=hMin, hMax=hMax, lMax=lMax, tol=tol, interpolation=interpolation, integration=integration) if (abs(poincare) > 5 ): # use 5 instead of 2pi to account for rounding errors # subsample to get starting point for iteration nt = 4 xmin = tracers[iy, ix, 0, 0] ymin = tracers[iy, ix, 0, 1] xmax = tracers[iy, ix + 1, 0, 0] ymax = tracers[iy + 1, ix, 0, 1] xx = np.zeros((nt**2, 3)) tracersSub = np.zeros((nt**2, 5)) i1 = 0 for j1 in range(nt): for k1 in range(nt): xx[i1, 0] = xmin + j1 / (nt - 1.) * (xmax - xmin) xx[i1, 1] = ymin + k1 / (nt - 1.) * (ymax - ymin) xx[i1, 2] = p.Oz i1 += 1 for it1 in range(nt**2): s = pc.stream(vv, p, hMin=hMin, hMax=hMax, lMax=lMax, tol=tol, interpolation=interpolation, integration=integration, xx=xx[it1, :]) tracersSub[it1, 0:2] = xx[it1, 0:2] tracersSub[it1, 2:] = s.tracers[s.sl - 1, :] min2 = 1e6 minx = xmin miny = ymin i1 = 0 for j1 in range(nt): for k1 in range(nt): diff2 = (tracersSub[i1, 2] - tracersSub[i1, 0] )**2 + (tracersSub[i1, 3] - tracersSub[i1, 1])**2 if (diff2 < min2): min2 = diff2 minx = xmin + j1 / (nt - 1.) * (xmax - xmin) miny = ymin + k1 / (nt - 1.) * (ymax - ymin) it1 += 1 # get fixed point from this starting position using Newton's method #TODO: dl = np.min( var.dx, var.dy ) / 100. # step-size for calculating the Jacobian by finite differences it = 0 # tracers used to find the fixed point tracersNull = np.zeros((5, 4)) point = np.array([minx, miny]) while True: # trace field lines at original point and for Jacobian: # (second order seems to be enough) xx = np.zeros((5, 3)) xx[0, :] = np.array([point[0], point[1], p.Oz]) xx[1, :] = np.array([point[0] - dl, point[1], p.Oz]) xx[2, :] = np.array([point[0] + dl, point[1], p.Oz]) xx[3, :] = np.array([point[0], point[1] - dl, p.Oz]) xx[4, :] = np.array([point[0], point[1] + dl, p.Oz]) for it1 in range(5): s = pc.stream(vv, p, hMin=hMin, hMax=hMax, lMax=lMax, tol=tol, interpolation=interpolation, integration=integration, xx=xx[it1, :]) tracersNull[it1, :2] = xx[it1, :2] tracersNull[it1, 2:] = s.tracers[s.sl - 1, 0:2] # check function convergence ff = np.zeros(2) ff[0] = tracersNull[0, 2] - tracersNull[0, 0] ff[1] = tracersNull[0, 3] - tracersNull[0, 1] #TODO: if (sum(abs(ff)) <= 1e-4): fixedPoint = np.array([point[0], point[1]]) break # compute the Jacobian fjac = np.zeros((2, 2)) fjac[0, 0] = ( (tracersNull[2, 2] - tracersNull[2, 0]) - (tracersNull[1, 2] - tracersNull[1, 0])) / 2. / dl fjac[0, 1] = ( (tracersNull[4, 2] - tracersNull[4, 0]) - (tracersNull[3, 2] - tracersNull[3, 0])) / 2. / dl fjac[1, 0] = ( (tracersNull[2, 3] - tracersNull[2, 1]) - (tracersNull[1, 3] - tracersNull[1, 1])) / 2. / dl fjac[1, 1] = ( (tracersNull[4, 3] - tracersNull[4, 1]) - (tracersNull[3, 3] - tracersNull[3, 1])) / 2. / dl # invert the Jacobian fjin = np.zeros((2, 2)) det = fjac[0, 0] * fjac[1, 1] - fjac[0, 1] * fjac[1, 0] #TODO: if (abs(det) < dl): fixedPoint = point break fjin[0, 0] = fjac[1, 1] fjin[1, 1] = fjac[0, 0] fjin[0, 1] = -fjac[0, 1] fjin[1, 0] = -fjac[1, 0] fjin = fjin / det dpoint = np.zeros(2) dpoint[0] = -fjin[0, 0] * ff[0] - fjin[0, 1] * ff[1] dpoint[1] = -fjin[1, 0] * ff[0] - fjin[1, 1] * ff[1] point += dpoint # check root convergence #TODO: if (sum(abs(dpoint)) < 1e-4): fixedPoint = point break if (it > 20): fixedPoint = point print "warning: Newton did not converged" break it += 1 # check if fixed point lies inside the cell if ((fixedPoint[0] < tracers[iy, ix, 0, 0]) or (fixedPoint[0] > tracers[iy, ix + 1, 0, 0]) or (fixedPoint[1] < tracers[iy, ix, 0, 1]) or (fixedPoint[1] > tracers[iy + 1, ix, 0, 1])): print "warning: fixed point lies outside the cell" else: x.append(fixedPoint[0]) y.append(fixedPoint[1]) #q.append() fidx += 1 queue.put((x, y, q, fidx, iproc))