Ejemplo n.º 1
0
    def _process(t):
        """Encode tree *t* and return the string."""
        # tree transformations
        if normalize_options['make_variables']:
            t.reset_variables(normalize_options['make_variables'])
        if normalize_options['canonicalize_roles']:
            t = transform.canonicalize_roles(t, model)
        if normalize_options['rearrange'] == 'canonical':
            layout.rearrange(t, key=model.canonical_order)
        elif normalize_options['rearrange'] == 'random':
            layout.rearrange(t, key=model.random_order)

        g = layout.interpret(t, model)

        # graph transformations
        if normalize_options['reify_edges']:
            g = transform.reify_edges(g, model)
        if normalize_options['dereify_edges']:
            g = transform.dereify_edges(g, model)
        if normalize_options['reify_attributes']:
            g = transform.reify_attributes(g)
        if normalize_options['indicate_branches']:
            g = transform.indicate_branches(g, model)

        if triples:
            return codec.format_triples(g.triples,
                                        indent=bool(
                                            format_options.get('indent',
                                                               True)))
        else:
            return codec.encode(g, **format_options)
Ejemplo n.º 2
0
def test_reify_attributes():
    decode = def_codec.decode
    norm = lambda g: reify_attributes(g)
    encode = lambda g: def_codec.encode(g, indent=None)

    g = norm(decode('(a / alpha :mod 5)'))
    assert encode(g) == '(a / alpha :mod (_ / 5))'

    g = norm(decode('(a / alpha :mod~1 5~2)'))
    assert encode(g) == '(a / alpha :mod~1 (_ / 5~2))'
Ejemplo n.º 3
0
def _process_in(t, model, normalize_options):
    """Encode tree *t* and return the string."""
    # tree transformations
    if normalize_options['canonicalize_roles']:
        t = transform.canonicalize_roles(t, model)

    g = layout.interpret(t, model)

    # graph transformations
    if normalize_options['reify_edges']:
        g = transform.reify_edges(g, model)
    if normalize_options['dereify_edges']:
        g = transform.dereify_edges(g, model)
    if normalize_options['reify_attributes']:
        g = transform.reify_attributes(g)
    if normalize_options['indicate_branches']:
        g = transform.indicate_branches(g, model)

    return g
Ejemplo n.º 4
0
def test_issue_35():
    # https://github.com/goodmami/penman/issues/35

    # don't re-encode; these (presumably) bad graphs probably won't
    # round-trip without changes. Changes may be predictable, but I
    # don't want to test and guarantee some particular output

    g = amr_codec.decode('(a / alpha :mod b :mod (b / beta))')
    g = reify_edges(g, amr_model)
    assert g.triples == [('a', ':instance', 'alpha'), ('_', ':ARG1', 'a'),
                         ('_', ':instance', 'have-mod-91'),
                         ('_', ':ARG2', 'b'), ('_2', ':ARG1', 'a'),
                         ('_2', ':instance', 'have-mod-91'),
                         ('_2', ':ARG2', 'b'), ('b', ':instance', 'beta')]

    g = amr_codec.decode('(a / alpha :mod 7 :mod 7))')
    g = reify_attributes(g)
    assert g.triples == [('a', ':instance', 'alpha'), ('a', ':mod', '_'),
                         ('_', ':instance', '7'), ('a', ':mod', '_2'),
                         ('_2', ':instance', '7')]