def _convert_to_su4(U): r"""Check unitarity of a 4x4 matrix and convert it to :math:`SU(4)` if the determinant is not 1. Args: U (array[complex]): A matrix, presumed to be :math:`4 \times 4` and unitary. Returns: array[complex]: A :math:`4 \times 4` matrix in :math:`SU(4)` that is equivalent to U up to a global phase. """ # Check unitarity if not math.allclose( math.dot(U, math.T(math.conj(U))), math.eye(4), atol=1e-7): raise ValueError("Operator must be unitary.") # Compute the determinant det = math.linalg.det(U) # Convert to SU(4) if it's not close to 1 if not math.allclose(det, 1.0): exp_angle = -1j * math.cast_like(math.angle(det), 1j) / 4 U = math.cast_like(U, det) * math.exp(exp_angle) return U
def _convert_to_su2(U): r"""Check unitarity of a matrix and convert it to :math:`SU(2)` if possible. Args: U (array[complex]): A matrix, presumed to be :math:`2 \times 2` and unitary. Returns: array[complex]: A :math:`2 \times 2` matrix in :math:`SU(2)` that is equivalent to U up to a global phase. """ # Check unitarity if not math.allclose( math.dot(U, math.T(math.conj(U))), math.eye(2), atol=1e-7): raise ValueError("Operator must be unitary.") # Compute the determinant det = U[0, 0] * U[1, 1] - U[0, 1] * U[1, 0] # Convert to SU(2) if it's not close to 1 if not math.allclose(det, [1.0]): exp_angle = -1j * math.cast_like(math.angle(det), 1j) / 2 U = math.cast_like(U, exp_angle) * math.exp(exp_angle) return U
def _decomposition_3_cnots(U, wires): r"""The most general form of this decomposition is U = (A \otimes B) V (C \otimes D), where V is as depicted in the circuit below: -╭U- = -C--╭X--RZ(d)--╭C---------╭X--A- -╰U- = -D--╰C--RY(b)--╰X--RY(a)--╰C--B- """ # First we add a SWAP as per v1 of arXiv:0308033, which helps with some # rearranging of gates in the decomposition (it will cancel out the fact # that we need to add a SWAP to fix the determinant in another part later). swap_U = np.exp(1j * np.pi / 4) * math.dot(math.cast_like(SWAP, U), U) # Choose the rotation angles of RZ, RY in the two-qubit decomposition. # They are chosen as per Proposition V.1 in quant-ph/0308033 and are based # on the phases of the eigenvalues of :math:`E^\dagger \gamma(U) E`, where # \gamma(U) = (E^\dag U E) (E^\dag U E)^T. # The rotation angles can be computed as follows (any three eigenvalues can be used) u = math.dot(Edag, math.dot(swap_U, E)) gammaU = math.dot(u, math.T(u)) evs, _ = math.linalg.eig(gammaU) # We will sort the angles so that results are consistent across interfaces. angles = math.sort([math.angle(ev) for ev in evs]) x, y, z = angles[0], angles[1], angles[2] # Compute functions of the eigenvalues; there are different options in v1 # vs. v3 of the paper, I'm not entirely sure why. This is the version from v3. alpha = (x + y) / 2 beta = (x + z) / 2 delta = (z + y) / 2 # This is the interior portion of the decomposition circuit interior_decomp = [ qml.CNOT(wires=[wires[1], wires[0]]), qml.RZ(delta, wires=wires[0]), qml.RY(beta, wires=wires[1]), qml.CNOT(wires=wires), qml.RY(alpha, wires=wires[1]), qml.CNOT(wires=[wires[1], wires[0]]), ] # We need the matrix representation of this interior part, V, in order to # decompose U = (A \otimes B) V (C \otimes D) # # Looking at the decomposition above, V has determinant -1 (because there # are 3 CNOTs, each with determinant -1). The relationship between U and V # requires that both are in SU(4), so we add a SWAP after to V. We will see # how this gets fixed later. # # -╭V- = -╭X--RZ(d)--╭C---------╭X--╭SWAP- # -╰V- = -╰C--RY(b)--╰X--RY(a)--╰C--╰SWAP- RZd = qml.RZ(math.cast_like(delta, 1j), wires=wires[0]).matrix RYb = qml.RY(beta, wires=wires[0]).matrix RYa = qml.RY(alpha, wires=wires[0]).matrix V_mats = [ CNOT10, math.kron(RZd, RYb), CNOT01, math.kron(math.eye(2), RYa), CNOT10, SWAP ] V = math.convert_like(math.eye(4), U) for mat in V_mats: V = math.dot(math.cast_like(mat, U), V) # Now we need to find the four SU(2) operations A, B, C, D A, B, C, D = _extract_su2su2_prefactors(swap_U, V) # At this point, we have the following: # -╭U-╭SWAP- = --C--╭X-RZ(d)-╭C-------╭X-╭SWAP--A # -╰U-╰SWAP- = --D--╰C-RZ(b)-╰X-RY(a)-╰C-╰SWAP--B # # Using the relationship that SWAP(A \otimes B) SWAP = B \otimes A, # -╭U-╭SWAP- = --C--╭X-RZ(d)-╭C-------╭X--B--╭SWAP- # -╰U-╰SWAP- = --D--╰C-RZ(b)-╰X-RY(a)-╰C--A--╰SWAP- # # Now the SWAPs cancel, giving us the desired decomposition # (up to a global phase). # -╭U- = --C--╭X-RZ(d)-╭C-------╭X--B-- # -╰U- = --D--╰C-RZ(b)-╰X-RY(a)-╰C--A-- A_ops = zyz_decomposition(A, wires[1]) B_ops = zyz_decomposition(B, wires[0]) C_ops = zyz_decomposition(C, wires[0]) D_ops = zyz_decomposition(D, wires[1]) # Return the full decomposition return C_ops + D_ops + interior_decomp + A_ops + B_ops
def _decomposition_2_cnots(U, wires): r"""If 2 CNOTs are required, we can write the circuit as -╭U- = -A--╭X--RZ(d)--╭X--C- -╰U- = -B--╰C--RX(p)--╰C--D- We need to find the angles for the Z and X rotations such that the inner part has the same spectrum as U, and then we can recover A, B, C, D. """ # Compute the rotation angles u = math.dot(Edag, math.dot(U, E)) gammaU = math.dot(u, math.T(u)) evs, _ = math.linalg.eig(gammaU) # These choices are based on Proposition III.3 of # https://arxiv.org/abs/quant-ph/0308045 # There is, however, a special case where the circuit has the form # -╭U- = -A--╭C--╭X--C- # -╰U- = -B--╰X--╰C--D- # # or some variant of this, where the two CNOTs are adjacent. # # What happens here is that the set of evs is -1, -1, 1, 1 and we can write # -╭U- = -A--╭X--SZ--╭X--C- # -╰U- = -B--╰C--SX--╰C--D- # where SZ and SX are square roots of Z and X respectively. (This # decomposition comes from using Hadamards to flip the direction of the # first CNOT, and then decomposing them and merging single-qubit gates.) For # some reason this case is not handled properly with the full algorithm, so # we treat it separately. sorted_evs = math.sort(math.real(evs)) if math.allclose(sorted_evs, [-1, -1, 1, 1]): interior_decomp = [ qml.CNOT(wires=[wires[1], wires[0]]), qml.S(wires=wires[0]), qml.SX(wires=wires[1]), qml.CNOT(wires=[wires[1], wires[0]]), ] # S \otimes SX inner_matrix = S_SX else: # For the non-special case, the eigenvalues come in conjugate pairs. # We need to find two non-conjugate eigenvalues to extract the angles. x = math.angle(evs[0]) y = math.angle(evs[1]) # If it was the conjugate, grab a different eigenvalue. if math.allclose(x, -y): y = math.angle(evs[2]) delta = (x + y) / 2 phi = (x - y) / 2 interior_decomp = [ qml.CNOT(wires=[wires[1], wires[0]]), qml.RZ(delta, wires=wires[0]), qml.RX(phi, wires=wires[1]), qml.CNOT(wires=[wires[1], wires[0]]), ] RZd = qml.RZ(math.cast_like(delta, 1j), wires=0).matrix RXp = qml.RX(phi, wires=0).matrix inner_matrix = math.kron(RZd, RXp) # We need the matrix representation of this interior part, V, in order to # decompose U = (A \otimes B) V (C \otimes D) V = math.dot(math.cast_like(CNOT10, U), math.dot(inner_matrix, math.cast_like(CNOT10, U))) # Now we find the A, B, C, D in SU(2), and return the decomposition A, B, C, D = _extract_su2su2_prefactors(U, V) A_ops = zyz_decomposition(A, wires[0]) B_ops = zyz_decomposition(B, wires[1]) C_ops = zyz_decomposition(C, wires[0]) D_ops = zyz_decomposition(D, wires[1]) return C_ops + D_ops + interior_decomp + A_ops + B_ops
def test_angle(t): """Test that the angle function works for a variety of input""" res = fn.angle(t) assert fn.allequal(res, [0, np.pi / 2, np.pi / 4])
def zyz_decomposition(U, wire): r"""Recover the decomposition of a single-qubit matrix :math:`U` in terms of elementary operations. Diagonal operations will be converted to a single :class:`.RZ` gate, while non-diagonal operations will be converted to a :class:`.Rot` gate that implements the original operation up to a global phase in the form :math:`RZ(\omega) RY(\theta) RZ(\phi)`. Args: U (tensor): A 2 x 2 unitary matrix. wire (Union[Wires, Sequence[int] or int]): The wire on which to apply the operation. Returns: list[qml.Operation]: A ``Rot`` gate on the specified wire that implements ``U`` up to a global phase, or an equivalent ``RZ`` gate if ``U`` is diagonal. **Example** Suppose we would like to apply the following unitary operation: .. code-block:: python3 U = np.array([ [-0.28829348-0.78829734j, 0.30364367+0.45085995j], [ 0.53396245-0.10177564j, 0.76279558-0.35024096j] ]) For PennyLane devices that cannot natively implement ``QubitUnitary``, we can instead recover a ``Rot`` gate that implements the same operation, up to a global phase: >>> decomp = zyz_decomposition(U, 0) >>> decomp [Rot(-0.24209529417800013, 1.14938178234275, 1.7330581433950871, wires=[0])] """ U = _convert_to_su2(U) # Check if the matrix is diagonal; only need to check one corner. # If it is diagonal, we don't need a full Rot, just return an RZ. if math.allclose(U[0, 1], [0.0]): omega = 2 * math.angle(U[1, 1]) return [qml.RZ(omega, wires=wire)] # If the top left element is 0, can only use the off-diagonal elements. We # have to be very careful with the math here to ensure things that get # multiplied together are of the correct type in the different interfaces. if math.allclose(U[0, 0], [0.0]): phi = 0.0 theta = -np.pi omega = 1j * math.log(U[0, 1] / U[1, 0]) - np.pi else: # If not diagonal, compute the angle of the RY cos2_theta_over_2 = math.abs(U[0, 0] * U[1, 1]) theta = 2 * math.arccos(math.sqrt(cos2_theta_over_2)) el_division = U[0, 0] / U[1, 0] tan_part = math.cast_like(math.tan(theta / 2), el_division) omega = 1j * math.log(tan_part * el_division) phi = -omega - math.cast_like(2 * math.angle(U[0, 0]), omega) return [ qml.Rot(math.real(phi), math.real(theta), math.real(omega), wires=wire) ]