def _ParseOutputForSamples(output):
    """Parses the output from running Coremark to get performance samples.

  Args:
    output: The output from running Coremark.

  Returns:
    A list of sample.Sample objects.

  Raises:
    Benchmarks.RunError: If correct operation is not validated.
  """
    if 'Correct operation validated' not in output:
        raise errors.Benchmarks.RunError('Correct operation not validated.')
    value = regex_util.ExtractFloat(r'CoreMark 1.0 : ([0-9]*\.[0-9]*)', output)
    metadata = {
        'summary':
        output.splitlines()[-1],  # Last line of output is a summary.
        'size':
        regex_util.ExtractInt(r'CoreMark Size\s*:\s*([0-9]*)', output),
        'total_ticks':
        regex_util.ExtractInt(r'Total ticks\s*:\s*([0-9]*)', output),
        'total_time_sec':
        regex_util.ExtractFloat(r'Total time \(secs\)\s*:\s*([0-9]*\.[0-9]*)',
                                output),
        'iterations':
        regex_util.ExtractInt(r'Iterations\s*:\s*([0-9]*)', output),
        'iterations_per_cpu':
        ITERATIONS_PER_CPU,
        'parallelism_method':
        FLAGS.coremark_parallelism_method,
    }
    return [sample.Sample('Coremark Score', value, '', metadata)]
Ejemplo n.º 2
0
def ParseOutput(hpcc_output, benchmark_spec):
  """Parses the output from HPCC.

  Args:
    hpcc_output: A string containing the text of hpccoutf.txt.
    benchmark_spec: The benchmark specification. Contains all data that is
        required to run the benchmark.

  Returns:
    A list of samples to be published (in the same format as Run() returns).
  """
  results = []
  metadata = dict()
  match = re.search('HPLMaxProcs=([0-9]*)', hpcc_output)
  metadata['num_cpus'] = match.group(1)
  metadata['num_machines'] = len(benchmark_spec.vms)
  UpdateMetadata(metadata)
  value = regex_util.ExtractFloat('HPL_Tflops=([0-9]*\\.[0-9]*)', hpcc_output)
  results.append(sample.Sample('HPL Throughput', value, 'Tflops', metadata))

  value = regex_util.ExtractFloat('SingleRandomAccess_GUPs=([0-9]*\\.[0-9]*)',
                                  hpcc_output)
  results.append(sample.Sample('Random Access Throughput', value,
                               'GigaUpdates/sec'))

  for metric in STREAM_METRICS:
    regex = 'SingleSTREAM_%s=([0-9]*\\.[0-9]*)' % metric
    value = regex_util.ExtractFloat(regex, hpcc_output)
    results.append(sample.Sample('STREAM %s Throughput' % metric, value,
                                 'GB/s'))

  value = regex_util.ExtractFloat(r'PTRANS_GBs=([0-9]*\.[0-9]*)', hpcc_output)
  results.append(sample.Sample('PTRANS Throughput', value, 'GB/s', metadata))
  return results
Ejemplo n.º 3
0
def Run(benchmark_spec):
    """Run Coremark on the target vm.

  Args:
    benchmark_spec: The benchmark specification. Contains all data that is
        required to run the benchmark.

  Returns:
    A list of sample.Sample objects.
  """
    vms = benchmark_spec.vms
    vm = vms[0]
    logging.info('Coremark running on %s', vm)
    num_cpus = vm.num_cpus
    vm.RemoteCommand(
        'cd %s;make PORT_DIR=linux64 ITERATIONS=%s XCFLAGS="-g -O2 '
        '-DMULTITHREAD=%d -DUSE_PTHREAD -DPERFORMANCE_RUN=1"' %
        (COREMARK_DIR, ITERATIONS_PER_CPU, num_cpus))
    logging.info('Coremark Results:')
    stdout, _ = vm.RemoteCommand('cat %s/run1.log' % COREMARK_DIR,
                                 should_log=True)
    value = regex_util.ExtractFloat(r'CoreMark 1.0 : ([0-9]*\.[0-9]*)', stdout)
    metadata = {'num_cpus': vm.num_cpus}
    metadata.update(vm.GetMachineTypeDict())
    return [sample.Sample('Coremark Score', value, '', metadata)]
Ejemplo n.º 4
0
def _CollectGpuSamples(
        vm: virtual_machine.BaseVirtualMachine) -> List[sample.Sample]:
    """Run XGBoost on the cluster.

  Args:
    vm: The virtual machine to run the benchmark.

  Returns:
    A list of sample.Sample objects.
  """
    cmd = [
        f'{FLAGS.xgboost_env}',
        'python3',
        f'{linux_packages.INSTALL_DIR}/xgboost/tests/benchmark/benchmark_tree.py',
        f'--tree_method={_TREE_METHOD.value}',
        f'--sparsity={_SPARSITY.value}',
        f'--rows={_ROWS.value}',
        f'--columns={_COLUMNS.value}',
        f'--iterations={_ITERATIONS.value}',
        f'--test_size={_TEST_SIZE.value}',
    ]
    if _PARAMS.value:
        cmd.append(f'--params="{_PARAMS.value}"')
    metadata = _MetadataFromFlags(vm)
    metadata.update(cuda_toolkit.GetMetadata(vm))
    metadata['command'] = ' '.join(cmd)

    stdout, stderr, exit_code = vm.RemoteCommandWithReturnCode(
        metadata['command'], ignore_failure=True)
    if exit_code:
        logging.warning('Error with getting XGBoost stats: %s', stderr)
    training_time = regex_util.ExtractFloat(r'Train Time: ([\d\.]+) seconds',
                                            stdout)
    return sample.Sample('training_time', training_time, 'seconds', metadata)
def ParseOutput(hpcc_output, benchmark_spec):
  """Parses the output from HPCC.

  Args:
    hpcc_output: A string containing the text of hpccoutf.txt.
    benchmark_spec: The benchmark specification. Contains all data that is
        required to run the benchmark.

  Returns:
    A list of samples to be published (in the same format as Run() returns).
  """
  results = []
  metadata = dict()
  match = re.search('HPLMaxProcs=([0-9]*)', hpcc_output)
  metadata['num_cpus'] = match.group(1)
  metadata['num_machines'] = len(benchmark_spec.vms)
  UpdateMetadata(metadata)

  # Parse all metrics from metric=value lines in the HPCC output.
  metric_values = regex_util.ExtractAllFloatMetrics(
      hpcc_output)
  for metric, value in metric_values.iteritems():
    results.append(sample.Sample(metric, value, '', metadata))

  # Parse some metrics separately and add units. Although these metrics are
  # parsed above and added to results, this handling is left so that existing
  # uses of these metric names will continue to work.
  value = regex_util.ExtractFloat('HPL_Tflops=([0-9]*\\.[0-9]*)', hpcc_output)
  results.append(sample.Sample('HPL Throughput', value, 'Tflops', metadata))

  value = regex_util.ExtractFloat('SingleRandomAccess_GUPs=([0-9]*\\.[0-9]*)',
                                  hpcc_output)
  results.append(
      sample.Sample('Random Access Throughput', value, 'GigaUpdates/sec',
                    metadata))

  for metric in STREAM_METRICS:
    regex = 'SingleSTREAM_%s=([0-9]*\\.[0-9]*)' % metric
    value = regex_util.ExtractFloat(regex, hpcc_output)
    results.append(
        sample.Sample('STREAM %s Throughput' % metric, value, 'GB/s', metadata))

  value = regex_util.ExtractFloat(r'PTRANS_GBs=([0-9]*\.[0-9]*)', hpcc_output)
  results.append(sample.Sample('PTRANS Throughput', value, 'GB/s', metadata))
  return results
Ejemplo n.º 6
0
def ParseResults(result, metadata):
    """Parse mcperf result into samples.

  Sample Output:
  #type       avg     std     min      p5     p10     p50     p67
  read      106.0    67.7    37.2    80.0    84.3   101.7   108.8
  update      0.0     0.0     0.0     0.0     0.0     0.0     0.0
  op_q       10.0     0.0     1.0     9.4     9.4     9.7     9.8

  Total QPS = 754451.6 (45267112 / 60.0s)

  Total connections = 8
  Misses = 0 (0.0%)
  Skipped TXs = 0 (0.0%)

  RX 11180976417 bytes :  177.7 MB/s
  TX          0 bytes :    0.0 MB/s
  CPU Usage Stats (avg/min/max): 31.85%,30.31%,32.77%

  Args:
    result: Text output of running mcperf benchmark.
    metadata: metadata associated with the results.

  Returns:
    List of sample.Sample objects and actual qps.
  """
    samples = []
    if FLAGS.mcperf_ratio < 1.0:
        # N/A for write only workloads.
        misses = regex_util.ExtractGroup(MISS_REGEX, result)
        metadata['miss_rate'] = float(misses)

    latency_stats = regex_util.ExtractGroup(LATENCY_HEADER_REGEX,
                                            result).split()
    # parse latency
    for metric in ('read', 'update', 'op_q'):
        latency_regex = metric + LATENCY_REGEX
        latency_values = regex_util.ExtractGroup(latency_regex, result).split()
        for idx, stat in enumerate(latency_stats):
            if idx == len(latency_values):
                logging.warning('Mutilate does not report %s latency for %s.',
                                stat, metric)
                break
            samples.append(
                sample.Sample(metric + '_' + stat, float(latency_values[idx]),
                              'usec', metadata))
    # parse bandwidth
    for metric in ('TX', 'RX'):
        bw_regex = metric + BANDWIDTH_REGEX
        bw = regex_util.ExtractGroup(bw_regex, result)
        samples.append(sample.Sample(metric, float(bw), 'MB/s', metadata))

    qps = regex_util.ExtractFloat(QPS_REGEX, result)
    samples.append(sample.Sample('qps', qps, 'ops/s', metadata))
    return samples, qps
Ejemplo n.º 7
0
def ParseResults(result, metadata):
  """Parse mutilate result into samples.

  Sample Output:
  #type       avg     min     1st     5th    10th    90th    95th    99th
  read       52.4    41.0    43.1    45.2    48.1    55.8    56.6    71.5
  update      0.0     0.0     0.0     0.0     0.0     0.0     0.0     0.0
  op_q        1.5     1.0     1.0     1.1     1.1     1.9     2.0     2.0

  Total QPS = 18416.6 (92083 / 5.0s)

  Misses = 0 (0.0%)

  RX   22744501 bytes :    4.3 MB/s
  TX    3315024 bytes :    0.6 MB/s

  Args:
    result: Text output of running mutilate benchmark.
    metadata: metadata associated with the results.

  Returns:
    List of sample.Sample objects and actual qps.
  """
  samples = []
  if FLAGS.mutilate_ratio < 1.0:
    # N/A for write only workloads.
    misses = regex_util.ExtractGroup(MISS_REGEX, result)
    metadata['miss_rate'] = float(misses)

  latency_stats = regex_util.ExtractGroup(LATENCY_HEADER_REGEX, result).split()
  # parse latency
  for metric in ('read', 'update', 'op_q'):
    latency_regex = metric + LATENCY_REGEX
    latency_values = regex_util.ExtractGroup(latency_regex, result).split()
    for idx, stat in enumerate(latency_stats):
      if idx == len(latency_values):
        logging.warning(
            'Mutilate does not report %s latency for %s.', stat, metric)
        break
      samples.append(
          sample.Sample(metric + '_' + stat,
                        float(latency_values[idx]),
                        'usec', metadata))
  # parse bandwidth
  for metric in ('TX', 'RX'):
    bw_regex = metric + BANDWIDTH_REGEX
    bw = regex_util.ExtractGroup(bw_regex, result)
    samples.append(
        sample.Sample(metric, float(bw), 'MB/s', metadata))

  qps = regex_util.ExtractFloat(QPS_REGEX, result)
  samples.append(sample.Sample('qps', qps, 'ops/s', metadata))
  return samples, qps
def MakeAccuracySamplesFromOutput(base_metadata: Dict[str, Any],
                                  output: str) -> List[sample.Sample]:
  """Creates accuracy samples containing metrics.

  Args:
    base_metadata: dict contains all the metadata that reports.
    output: string, command output

  Returns:
    Samples containing training metrics.
  """
  metadata = {}
  for column_name in _ACCURACY_METADATA:
    metadata[f'mlperf {column_name}'] = regex_util.ExtractExactlyOneMatch(
        fr'{re.escape(column_name)} *: *(.*)', output)
  accuracy = regex_util.ExtractFloat(
      r': Accuracy = (\d+\.\d+), Threshold = \d+\.\d+\. Accuracy test PASSED',
      output)
  metadata['Threshold'] = regex_util.ExtractFloat(
      r': Accuracy = \d+\.\d+, Threshold = (\d+\.\d+)\. Accuracy test PASSED',
      output)
  metadata.update(base_metadata)
  return [sample.Sample('accuracy', float(accuracy), '%', metadata)]
def _ExtractThroughput(output):
    """Extract throughput from TensorFlow output.

  Args:
    output: TensorFlow output

  Returns:
    throuput (float)
  """
    regex = r'total images/sec: (\S+)'
    try:
        return regex_util.ExtractFloat(regex, output)
    except:
        raise TFParseOutputException('Unable to parse TensorFlow output')
def MakeSamplesFromOutput(metadata: Dict[str, Any],
                          output: str) -> List[sample.Sample]:
  """Create samples containing metrics.

  Args:
    metadata: dict contains all the metadata that reports.
    output: string, command output
  Example output:
    perfkitbenchmarker/tests/linux_benchmarks/mlperf_inference_benchmark_test.py

  Returns:
    Samples containing training metrics.
  """
  for column_name in _METADATA_COLUMNS:
    metadata[f'mlperf {column_name}'] = regex_util.ExtractExactlyOneMatch(
        fr'{re.escape(column_name)} *: *(.*)', output)
  throughput = regex_util.ExtractFloat(
      r': result_scheduled_samples_per_sec *: *(.*), Result is VALID', output)
  return [sample.Sample('throughput', float(throughput), 'samples/s', metadata)]
Ejemplo n.º 11
0
def MakePerformanceSamplesFromOutput(base_metadata: Dict[str, Any],
                                     output: str) -> List[sample.Sample]:
  """Create performance samples containing metrics.

  Args:
    base_metadata: dict contains all the metadata that reports.
    output: string, command output
  Example output:
    perfkitbenchmarker/tests/linux_benchmarks/mlperf_inference_benchmark_test.py

  Returns:
    Samples containing training metrics.
  """
  metadata = {}
  for column_name in _PERFORMANCE_METADATA:
    metadata[f'mlperf {column_name}'] = regex_util.ExtractExactlyOneMatch(
        fr'{re.escape(column_name)} *: *(.*)', output)
  metadata.update(base_metadata)
  throughput = regex_util.ExtractFloat(
      r': result_scheduled_samples_per_sec: (\d+\.\d+)', output)
  return [sample.Sample('throughput', float(throughput), 'samples/s', metadata)]
def _CreateSingleSample(sample_name, sample_units, metadata, client_stdout):
  """Creates a sample from the tensorflow_serving_client_workload stdout.

  client_stdout is expected to contain output in the following format:
    key1: int_or_float_value_1
    key2: int_or_float_value_2

  Args:
    sample_name: Name of the sample. Used to create a regex to extract the value
      from client_stdout. Also used as the returned sample's name.
    sample_units: Units to be specified in the returned sample
    metadata: Metadata to be added to the returned sample
    client_stdout: Stdout from tensorflow_serving_client_workload.py

  Returns:
    A single floating point sample.

  Raises:
    regex_util.NoMatchError: when no line beginning with sample_name: is found
      in client_stdout
  """
  regex = sample_name + r'\:\s*(\w+\.?\w*)'
  value = regex_util.ExtractFloat(regex, client_stdout)
  return sample.Sample(sample_name, value, sample_units, metadata)
Ejemplo n.º 13
0
def _RunIperf(sending_vm, receiving_vm, receiving_ip_address, ip_type):
    """Run iperf using sending 'vm' to connect to 'ip_address'.

  Args:
    sending_vm: The VM sending traffic.
    receiving_vm: The VM receiving traffic.
    receiving_ip_address: The IP address of the iperf server (ie the receiver).
    ip_type: The IP type of 'ip_address' (e.g. 'internal', 'external')
  Returns:
    A Sample.
  Raises:
    regex_util.NoMatchError: When iperf results are not found in stdout.
  """
    iperf_cmd = ('iperf --client %s --port %s --format m --time 60' %
                 (receiving_ip_address, IPERF_PORT))
    stdout, _ = sending_vm.RemoteCommand(iperf_cmd, should_log=True)

    iperf_pattern = re.compile(r'(\d+\.\d+|\d+) Mbits/sec')
    value = regex_util.ExtractFloat(iperf_pattern, stdout)

    metadata = {
        # TODO(voellm): The server and client terminology is being
        # deprecated.  It does not make clear the direction of the flow.
        'server_machine_type': receiving_vm.machine_type,
        'server_zone': receiving_vm.zone,
        'client_machine_type': sending_vm.machine_type,
        'client_zone': sending_vm.zone,

        # The meta data defining the environment
        'receiving_machine_type': receiving_vm.machine_type,
        'receiving_zone': receiving_vm.zone,
        'sending_machine_type': sending_vm.machine_type,
        'sending_zone': sending_vm.zone,
        'ip_type': ip_type
    }
    return sample.Sample('Throughput', float(value), 'Mbits/sec', metadata)
Ejemplo n.º 14
0
 def testParsesSuccessfully(self):
     regex = r'test (\d+|\.\d+|\d+\.\d+) string'
     string = 'test 12.435 string'
     self.assertAlmostEqual(12.435,
                            regex_util.ExtractFloat(regex, string, group=1))
def _ParseResult(out, test):
    """Parse blazemark results.

  Sample output:
  https://bitbucket.org/blaze-lib/blaze/wiki/Blazemark#!command-line-parameters
  Dense Vector/Dense Vector Addition:
   C-like implementation [MFlop/s]:
     100         1115.44
     10000000    206.317
   Classic operator overloading [MFlop/s]:
     100         415.703
     10000000    112.557
   Blaze [MFlop/s]:
     100         2602.56
     10000000    292.569
   Boost uBLAS [MFlop/s]:
     100         1056.75
     10000000    208.639
   Blitz++ [MFlop/s]:
     100         1011.1
     10000000    207.855
   GMM++ [MFlop/s]:
     100         1115.42
     10000000    207.699
   Armadillo [MFlop/s]:
     100         1095.86
     10000000    208.658
   MTL [MFlop/s]:
     100         1018.47
     10000000    209.065
   Eigen [MFlop/s]:
     100         2173.48
     10000000    209.899
   N=100, steps=55116257
     C-like      = 2.33322  (4.94123)
     Classic     = 6.26062  (13.2586)
     Blaze       = 1        (2.11777)
     Boost uBLAS = 2.4628   (5.21565)
     Blitz++     = 2.57398  (5.4511)
     GMM++       = 2.33325  (4.94129)
     Armadillo   = 2.3749   (5.0295)
     MTL         = 2.55537  (5.41168)
     Eigen       = 1.19742  (2.53585)
   N=10000000, steps=8
     C-like      = 1.41805  (0.387753)
     Classic     = 2.5993   (0.710753)
     Blaze       = 1        (0.27344)
     Boost uBLAS = 1.40227  (0.383437)
     Blitz++     = 1.40756  (0.384884)
     GMM++       = 1.40862  (0.385172)
     Armadillo   = 1.40215  (0.383403)
     MTL         = 1.39941  (0.382656)
     Eigen       = 1.39386  (0.381136)

  Args:
    out: string. Blazemark output in raw string format.
    test: string. Name of the test ran.

  Returns:
    A list of samples. Each sample if a 4-tuple of (benchmark_name, value, unit,
    metadata).
  """
    matches = regex_util.ExtractAllMatches(THROUGHPUT_HEADER_REGEX, out)
    results = []
    for m in matches:
        lib = _SimplfyLibName(m[0])
        metadata = {}
        filled = m[1]
        if filled:
            metadata['% filled'] = regex_util.ExtractFloat(
                FILLED_REGEX, filled)
        unit = m[-2]
        for v in regex_util.ExtractAllMatches(THROUGHPUT_RESULT_REGEX, m[-1]):
            metadata['N'] = int(v[0])
            results.append(
                sample.Sample(
                    '_'.join([test, lib, 'Throughput']),  # Metric name
                    float(v[1]),  # Value
                    unit,  # Unit
                    copy.deepcopy(metadata)))  # Metadata
    logging.info('Results for %s:\n %s', test, results)
    return results